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The globalization of the semiconductor supply chain introduces ever-increasing security and privacy risks.
Two major concerns are IP theft through reverse engineering and malicious modification of the design. The
latter concern in part relies on successful reverse engineering of the design as well. IC camouflaging and
logic locking are two of the techniques under research that can thwart reverse engineering by end-users or
foundries. However, developing low overhead locking/camouflaging schemes that can resist the ever-evolving
state-of-the-art attacks has been a challenge for several years. This article provides a comprehensive review
of the state of the art with respect to locking/camouflaging techniques. We start by defining a systematic
threat model for these techniques and discuss how various real-world scenarios relate to each threat model.
We then discuss the evolution of generic algorithmic attacks under each threat model eventually leading to
the strongest existing attacks. The article then systematizes defences and along the way discusses attacks
that are more specific to certain kinds of locking/camouflaging. The article then concludes by discussing
open problems and future directions.
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1 INTRODUCTION

In recent decades, we have witnessed the globalization of the integrated circuit (IC) supply chain
propelled by the ever-increasing design complexity and cost of the semiconductor industry. How-
ever, such globalization comes at a cost. Although it reduces the overall expense, the worldwide
distribution of IC design, fabrication, assembly, and deployment introduces serious IP privacy and
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Fig. 1. Example of (a) IC camouflaging and (b) logic locking.
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Fig. 2. Physical reverse engineering flow: An adversary can depackage and delayer an IC and leverage image
processing techniques to reconstruct the circuit layout. Then the gate-level netlist can be extracted.

integrity infringement. The primary risks associated with the globalized IC supply chain can be
broadly categorized as (1) malicious design modification [34, 44] and (2) IP theft through reverse
engineering [45, 58, 88, 89, 91].

The threat of reverse engineering and IP theft arises from the fact that the design is dis-
closed to potentially malicious adversaries, including untrusted foundries and end-users. As for
the foundries, they have full knowledge of the circuit layout and hence can extract the transistor-
level design directly [58, 88, 91]. As for malicious end-users, per Figure 2, given a packaged IC
acquired from the market, after depackaging, delayering, imaging, and processing these images,
the circuit layout can be reconstructed [91]. The process of layout reconstruction and netlist ex-
traction is usually referred to as physical reverse engineering. Over the past decade, such reverse
engineering techniques have developed rapidly, demonstrating successful reconstruction of prod-
ucts of leading semiconductor companies in advanced technology nodes [16]. Therefore, to protect
hardware IP, one must protect the design against reverse engineering attacks. In fact, the more seri-
ous threat of malicious modification itself relies on a certain level of successful reverse engineering
of the design in the first place.

There are three main broad categories of techniques for thwarting reverse engineering by
end-users or foundries: (1) Split-manufacturing, (2) Logic locking, and (3) IC camouflaging. Split-
manufacturing is based on fabricating the upper metal layers of the IC in a trusted foundry. Locking
and camouflaging are two techniques that try to thwart reverse engineering in the absence of a
trusted nano-fabrication facility and are the focus of this article. Both these techniques can be
modeled mathematically as disclosing a partially ambiguous design to attackers. Hence in this ar-
ticle, we sometimes refer to both of them as “logic obfuscation,” even though they have important
practical differences that must be noted [19, 43, 60, 69, 76, 105, 114].

IC camouflaging is based on using fabrication-level techniques to build circuits whose function-
ality cannot be easily deduced using known physical reverse engineering techniques [19, 43, 60,
105]. This typically means creating layout structures that cannot be deduced to a specific function-
ality from the top view under nanoscale microscopy. For digital circuits, this can be done by first
designing smaller camouflaged units/cells and then inserting them throughout the netlist with
a given insertion strategy. As shown in Figure 1(a), a camouflaging cell that from the top view
appears to implement either a NAND or a NOR function, is inserted into the netlist to replace
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the original gate G4. Since the functionality of the camouflaging cell cannot be determined in the
reverse engineering process, the netlist’s functionality is obscured.

Logic locking is based on adding some form of programmability to the design and ensuring that
the circuit cannot function properly without the circuit being programmed with a secret string
of configuration data referred to as the “key” [69, 95, 99, 100, 103]. Figure 1(b) shows an example
of logic locking in which an additional “key-input” along with a “key-gate” is added. The correct
circuit functionality only manifests itself upon programming of the correct key bit (k; = 1).

In the past few years, research on logic obfuscation has received considerable attention and
has made remarkable progress. This research can be categorized into different hierarchical levels:
fabrication level [9, 17, 18, 93], cell level [27, 43, 49, 61], and netlist level [39, 43, 61, 77, 78, 105].
At the fabrication level, the main focus is on the nano-device structures that can hide the cir-
cuit’s functionality. For camouflaging, this includes using doping levels, dummy-contacts between
metal layers, and so on. For locking at the device level, tamper-resistant programmable technolo-
gies are needed. At the cell level, the nano-primitives are used to develop different cell designs
that can manifest reverse engineering ambiguity. The next step is to transform the original circuit
and incorporate these cells with the goal of maximizing security with minimum area/delay/power
overhead. The majority of the algorithmic work involved with locking/camouflaging hence fo-
cuses on a netlist-level abstraction [69, 99, 100, 103]. With a netlist-level abstraction both types of
obfuscation (camouflaging and locking) can be modeled with the same mathematics resulting in
attacks that can target both techniques interchangeably.

The main distinction between IC camouflaging and logic locking is in that since IC camouflaging
requires fixed ambiguous layout structures, these details must be disclosed to the foundry for the
purpose of fabricating them. Hence, IC camouflaging can only protect the hardware IP against
malicious end-users [61]. However, in logic locking, a post-fabrication activation step is required
to program the secret key into the circuit [69] without which the foundry should not be able to
fully operate the circuit [69].

Locking and camouflaging schemes can be attacked with different approaches. If the nano-
device itself cannot be reverse engineered, then algorithmic attacks can be used at the netlist
level, typically referred to as “deobfuscation” algorithms/attacks. Different deobfuscation algo-
rithms have been proposed under different threat models [26, 61, 75, 81, 83, 84, 87, 96, 97, 106, 111,
116]. In response to the fast-evolving array of deobfuscation attacks, new obfuscation schemes are
developed accordingly. This “arms race” results in stronger attacks that inspire stronger obfusca-
tion schemes that, in turn, inspire new attacks.

Given this context, it is timely to conduct a comprehensive review of recent progress in the field
of logic obfuscation. To the best of our knowledge, there is no dedicated comprehensive review on
logic obfuscation that considers the most recent radical changes in the field within a systematic
threat model. As we will discuss in the article, the lack of a clear systematic approach to threat
modeling has resulted in various schemes that claim qualitative security but are in fact not secure
once a more accurate threat model is considered. Having a taxonomy of threat models helps de-
signers understand under what conditions exactly the locking/camouflaging scheme guarantees
what level of security. Therefore, this survey article starts with a deep discussion about what logic
obfuscation aims to protect and an enumeration of threat models that relate to real-world scenar-
ios in different ways. It then moves on to develop a map of deobfuscation attacks with the goal
of describing a collection of known attacks that form the frontier of deobfuscation within each
respective threat model. The article then does the same with defense schemes, finally arriving at a
map that allows the reader to get a sense of what one can expect from the state of the art of lock-
ing and that of camouflaging, were they to transfer the existing research to practice. The survey
concludes by discussing some common pitfalls in the area and open research challenges.
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The article is organized as follows. Section 2 describes the attack model of logic obfuscation
and provides an overview of the evolution of attack and defense schemes. Section 3 surveys attack
algorithms. Section 4 describes protection schemes. Section 5 summarizes the state of the art and
presents pitfalls and future directions. Section 6 concludes the article.

2 AN OVERVIEW OF OBFUSCATION RESEARCH

Over the past 10 years, extensive research has been conducted for both logic obfuscation and deob-
fuscation attacks. Before we explain these in more detail, we first provide a dense overview of this
arms-race. The first significant logic locking strategy, EPIC, is proposed in Reference [69]. EPIC
randomly inserts key-controlled XOR/XNOR gates into the netlist and proposes a key distribution
framework using public-key cryptography. The original EPIC paper claimed security by arguing
that the Quantified Boolean Formula (QBF) that results from trying to find a key that equates the
obfuscated circuit to the original circuit was intractable due to alternating quantifiers for larger key
sizes. Following EPIC, Reference [7] proposed a new locking strategy that leverages key-controlled
reconfigurable logic blocks, denoted as barriers. Compared with EPIC, Reference [7] further dis-
cussed the need to ensure that all paths in the circuit from inputs to go through at least some key
logic to heuristically increase security.

The first sophisticated deobfuscation scheme called the testing-based attack was proposed in
Reference [61] and was further enhanced in Reference [39]. This for the first time opened up
the discussion on threat modeling. The approach assumes the attacker has access to all internal
registers of a functional/unlocked circuit and can query its combinational slices with chosen input
patterns and observe the correct output. This threat model was later called the “oracle-guided”
model. Instead of exhaustively searching the entire input space, the testing-based attack leverages
hardware testing principles, e.g., sensitization and justification, to select input vectors to query
the functional IC. This approach has been effective at attacking circuits obfuscated by random-
insertion by isolating the key bits. Later, it was observed that when different key bits interfere
with each other, as described in detail in Section 4, the testing-based attack can fail. Therefore,
Reference[61] proposes a clique-based obfuscation strategy to insert key-gates that form a clique
in the dependency graph of the circuit so that the number of interfering key pairs are maximized.

The Boolean satisfiability solver (SAT)-based attack was proposed in Reference [26, 87, 111] as a
general oracle-guided attack. In the SAT attack, the problem of finding what patterns to query and
resolving the key based on the queries, is formulated into a series of incremental SAT problems.
By solving the SAT problem, new input patterns called discriminating input patterns (DIPs) are
mined and queried on the oracle. The resulting input/output (I/O)-pairs are then added back into
the SAT problem, allowing the algorithm to implicitly prune incorrect keys. The I/O-pair addition
guides the DIP mining process until a correct key is found. Exploiting the performance of modern
SAT solvers the SAT attack was able to deobfuscate the majority of existing low-overhead locking
and camouflaging schemes at the time on benchmark circuits with thousands of gates.

Shortly after, a new approach to obfuscation was proposed to thwart the SAT-attack based on
decreasing the effectiveness of each DIP, in essence making each DIP prune fewer keys and thus
increasing the minimum number of DIPs required to find a correct key [43, 99, 104, 105, 108]. These
approaches relied heavily on the use of “point-functions” or comparator logic. By inserting these
blocks in the circuit they cause the obfuscated circuit to misbehave on only a small number of input
patterns. Since reverse engineering the circuit requires finding these few misbehaving locations
in the exponentially large input space and patching the output for them, it can be shown that any
oracle-guided deobfuscation methods will require on average exponential queries for perfectly
deobfuscating such a scheme.
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As may be noticed from the above description, the main challenge with point-function schemes
is that they do not create a high output error. That is, the obfuscated circuit deviates from the orig-
inal circuit on only an exponentially small portion of the input space. In fact the authors of point-
function schemes were familiar with this flaw and hence proposed combining traditional non-
SAT-resilient schemes that had higher error-rates with the SAT-resilient point-function schemes.
However, later, other SAT attack variants such as AppSAT [75, 80] and DDIP [84] where proposed
that were capable of taking such compound obfuscation schemes and attacking the high-error
portion in minutes reducing the high-error SAT-resilient compound scheme back to a low-error
point-function scheme. AppSAT specifically was called an approximate attack as it focused on the
exponential approximation of the oracle rather than perfect deobfuscation. This view of obfusca-
tion opened up studying a new notion of security called approximation-resiliency. To respond to
approximate attacks, researchers have tried to create schemes that consider both the output error
probability as well as the minimum DIP count.

Another approach to securing obfuscation has been to introduce unconventional structures into
the obfuscated circuit [77, 78, 114]. In References [65, 66, 77, 78], circuit wire interconnections are
obfuscated by introducing dense, nested, cyclic structures into the netlist, which do not impact the
circuit functionality but significantly complicate the attack process. In another effort [114], some
flip-flops in the circuit are deliberately removed to create a mixture of unconventional timing paths
in the circuit, which cannot be directly resolved by baseline SAT attacks.

Cyclic obfuscated circuits were first broken with the CycSAT algorithm proposed in References
[116]. It was later shown first in Reference [64] and then in References [67, 82] that CycSAT attacks
may run into problems when attacking dense cyclic circuits and exhaustive cycle enumeration of
such circuit may be necessary, which is an exponential computational task. As for timing-based
camouflaging schemes, TimingSAT [42] was proposed and tested on benchmark circuit as well.

As for logic obfuscation in the realm of sequential logic, it was first noted in References [25, 53]
that in the absence of access to all of the oracle’s state-elements a sequential formulation of the
SAT attack is required. This formulation is largely similar to the oracle-guided SAT attack, except
that SAT queries are replaced with model-checking queries and unrolling the sequential circuit
over several clock cycles. The model-checking attack was shown to be successful in deobfuscating
large benchmarks although with significant slow-down compared to the combinational SAT attack
at least up to tens of cycles.

In parallel with all the above work on combinational obfuscation an entirely separate branch
of obfuscation focused on transforming and obfuscating finite-state-machines (FSMs) [3, 13, 14,
54, 112]. By adding additional dummy states to an FSM and then having the user traverse the
dummy states to reach the original FSM, a locking mechanism can be implemented. This branch
of obfuscation did not receive much attention from attackers, hence a clear in-depth threat model
and analysis was never developed until recently, where it was shown that the majority of these
FSM obfuscation schemes may not be able to resist even attacks that do not have access to an oracle
circuit known as oracle-less attacks. A couple of oracle-less attacks [12, 51] have been somewhat
successful against older combinational locking schemes as well.

The description above provides a high-level timeline of the major milestones in obfuscation
research. In the following sections, rather than the above time-view we will devise a categorization
based on the attackers’ capabilities and the defenders goals. We will discuss the frontier in each
area in more detail.

3 ON ATTACKS
3.1 Notations

Before we begin our discussion on attacks, we review some basic mathematical notation.
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We let ¢, denote the original circuit before obfuscation. As for combinational circuits, ¢, can
be modeled as a Boolean function/circuit that has n input bits with the input space 7 = {0, 1}"
and m output bits with output space O C {0, 1}™. Logic locking can be modeled as transforming
¢, to an augmented function ¢, : 7 X K — O by adding [/ key inputs, where K C {0, 1}! denotes
the key space. Meanwhile, there always exists at least one correct key vector k* € K such that
ce (i, k*) = ¢o(i), Vi € I. The additional variables k induce a function space C = {c. (i, k)|k € K}.

While IC camouflaging has a different implementation, it can be modeled with the same seman-
tics. We can encode the ambiguity in the camouflaged netlist using key-variables. For instance, a
camouflaged cell that implements either AND/NAND can be modeled with an AND gate plus a
NAND gate that is arbitrated with a key-controlled MUX gate. The key-variable decides whether
to pick the AND or NAND gate. It can be shown that all camouflaging schemes can be encoded
with a polynomial number of key-variables [26, 110]. Therefore, it is possible to study attacks on
camouflaging and locking within the same context.

If the original or obfuscated circuit are sequential, then ¢, and c, become stateful Boolean func-
tions. A sequential circuit takes input i, produces output o, and updates an internal state s in each
clock cycle. Such a circuit can be expressed by a next-state function ns(i,s) — s’ and an output
function of{i, s) — o. Hence, we can write c. (i, k) : (s’,0) « (ns.(i, k), of, (i, s, k)), or simply write
ce(i, s, k) to denote that c, is a sequential function with primary input i, key input k, and current
state s that produces an output and updates s.

A widely used notion in obfuscation is output error rate. Error rate can be defined in various
ways. One way is to take the probability of the obfuscated circuit disagreeing with the original
circuit over the combined input and key space (Z x K):

1
Erceco) = _pr [e?G) # 0] -

Note that this probability can be defined over inputs on a fixed key or keys on a fixed input as
well. These various definitions capture similar notions for most obfuscation schemes.

As for FSM obfuscation the state-transition-graph (STG) of an FSM can be modeled with a graph
with a state-encoding on each node and a Boolean condition on the input on each edge. The FSM
boots up in the reset state and each clock cycles makes transitions based on the edge conditions.
This graph will be transformed to another graph as a result of obfuscation.

3.2 Modeling Attackers

The threat/attack model for a given security problem defines clearly the capabilities and inten-
tions of the attacker. The threat model in logic obfuscation is extremely critical to the security
analysis of a particular scheme. While in some threat models it is easy to secure logic obfuscation
with very low overhead, in other threat models it might be impossible to achieve security at all.
Hence it should be the first step of anyone who is employing or studying an obfuscation scheme
to accurately specify the intended threat model.

First, with respect to having access to an oracle, the following categories can be enumerated:

e Oracle-less (OL): The attacker has access only to the obfuscated netlist ¢, [51]. For a
foundry attacker this would come from converting the GDS layout files to a transistor-level
and then logic-level netlist. For an end-user, ¢, must be extracted from physical reverse
engineering. This can be seen in Figure 3.

e Oracle-guided (OG): In addition to the obfuscated netlist, the attacker has access to a func-
tional circuit, or “oracle,” that implements the original circuit ¢, [26, 87]. This can be ac-
quired from the open market and is treated as a black-box circuit. The attacker cannot
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Fig. 3. The foundry has access to the layout of the IC and hence all non-programmable parts of the netlist
are visible to the foundry. The end-user will have to physically reverse engineer a packaged IC to extract a
netlist that will have ambiguities around camouflaged logic. Given access to the ambiguous netlist c., the
oracle-guided (OG) and the oracle-less (OL) attackers want to recover the original circuit c,.

observe or probe the internal signals of this chip directly but has access to all state-
elements in the functional circuit and can hence query the original circuit’s combinational
blocks/cones with chosen input patterns and observe their output. In this attacker model
there can be no state-elements in between a pair of controllable-observable points.

e Sequential Oracle-guided (SOG): In this case, the attacker has access to an oracle but
cannot control/observe some internal state elements [25, 52]. In this case, the logic between
a controllable-observable pair of points is sequential. Hence the attacker has input-output
access to a sequential ¢,. The reset state of this chip can also be unknown.

e t-probed Oracle: When the attacker is allowed to probe t > 1locations in the oracle circuit.
It is easy to see that secure obfuscation under this model should be impossible with low
overhead as the attacker can probe the camouflaged-cells/keys or their fanouts. If the entire
computation is randomized, then the source of the randomization can still be probed to
reverse engineer the circuit.

Each of the above threat models map to a real-world scenario. For instance, in IC camouflaging
a non-oracle-guided threat model may not be reasonable for commercial ICs. Since commercial
ICs are manufactured in batch, if an attacker has access to one chip that can be reverse engineered
to extract the obfuscated netlist, it is reasonable to assume that he/she can get access to a second
chip from the same market to query as an oracle. As for logic locking, a foundry that is fabricating
the first-ever batch of a locked circuit does not have access to an oracle as no oracle has yet been
programmed and marketed. However, an end-user that is trying to reverse engineer a commercial
locked circuit is likely to have access to a second chip as an oracle. Opto-electrical probing from
the backside [47, 90] or top-layer physical probing are increasingly being successful in reading
active voltage levels on deeply scaled technologies. If there is no physical countermeasures against
such techniques (secure coating, etc. [68, 92]), then a t-probed-oracle model is necessary, which
implies extremely difficult if not impossible protection. As another important example, the leakage
of testing data (correct input/output patterns) can be considered as a constrained oracle-guided
model [107].

We can also enumerate attackers in terms of their ability in recognizing and reverse engineering
ambiguous elements in a locked/camouflaged IC:

e Distinct Ambiguity: The locked circuit attacker knows which wires in the locked circuit
are keys but does not know the value of the keys. The camouflaged circuit attacker knows
the cells and vias in the camouflaged circuit that are camouflaged/vague but does not know
their exact functionality.
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e Ubiquitous Ambiguity: The locked circuit attacker does not know which wires are pro-
grammable keys and which wires are normal inputs. The camouflaged circuit attacker does
not know which vias/cells are camouflaged. As a result, the attacker suspects that all ele-
ments may be fake and all inputs may be keys.

In logic locking, for instance, if metal-to-metal antifuse is used for locking, then it is difficult
to hide the location of keys if the antifuse layout is different than that of a normal via under
microscopy. If an on-chip nonvolatile memory is used for programming keys, then we can try to
make it such that the nonvolatile memory is used for other purposes in the circuit as well, so that an
attacker cannot isolate the memory unit to find the key inputs. As for IC camouflaging, by creating
cells and vias that look similar to normal cells and vias from the top view we can create a scenario
where the attacker suspects all vias and cells of being camouflaged. This excessively increases the
difficulty of reverse engineering. Having a clear idea of the stealthiness of locking/camouflaging
nano-primitives is key to an accurate modeling of attackers.

Another critical dimension in modeling attackers is their intent. What is the goal of the attacker?
Is it to learn the exact functionality of the circuit or just approximate it? We can enumerate the
following with respect to this dimension:

e Exact Functional Recovery: The attacker wants to learn the exact Boolean function of c,.
If the attacker recovers a circuit that misbehaves on only a single input pattern, then he/she
considers the attack a failure.

e c-Approximate Functional Recovery: The attacker intends to approximate the func-
tionality of the circuit with (1 — €)-accuracy, i.e, recover function h that agrees with ¢, on
a (1 — €) portion of the input space.

e Functional/Structural Identification: The attacker wants to identify and categorize cir-
cuit blocks (e.g., find multipliers, adders, and control units), find a specific elements such as
the instruction register, or find the boundary of modules or particular wires, and so on.

We digress here to discuss a pitfall in obfuscation research. In addition to the above attacker
intents, there is another attacker intention that applies only to locking. That is “an end-user at-
tacker attempting to find a key that will unlock a pristine fabricated locked IC.” It can be shown
that focusing solely on such an attacker intent with locking may not be reasonable. This is because
achieving such a goal is not related to functional obfuscation at all. The defender can simply im-
plement a key-comparison circuit onto every chip that works along with a physically-unclonable-
function (PUF) to check for a unique key before activating the power-line or a critical module
in the IC. This way an end-user cannot “activate” a fabricated pristine IC without knowledge of
the unique key, even though the circuit is not obfuscated (protected against functional reverse
engineering) at all. Hence, the more interesting goal of locking is not to prevent end-users from
activating chips; rather, it is to obscure the Boolean functionality of the circuit by intelligently and
intimately mixing the circuit with a secret key in a non-removable way. This stronger notion of
functional obfuscation implies the difficulty of unauthorized activation but the reverse is not true.
This point has implications for protections schemes that we discuss in Section 5.

As for the three functional attacker intents defined above, a majority of attacks and defenses fall
into the first category. AppSAT [80], DDIP [84], the hill-climbing attack [56], and approximation-
resiliency relate to the second class. At this point in obfuscation research we do not have a formal
definition and analysis of the third category of functional identification. In other words, we do not
know how hard it is to detect that an obfuscated multiplier is still a multiplier without having to
deobfuscate it first. The same goes for finding specific wires and modules in an obfuscated circuit.
This is in part due to the difficulty of functional identification on unobfuscated circuits in the first
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() (b)

Fig. 4. Example for the testing-based attack: (a) Easily resolvable netlist and (b) non-resolvable netlist.

place, even though the area is seeing some advances [30, 45, 88]. The remainder of the section
discusses existing attacks fitting the various above categories in more detail.

3.3 Oracle-guided Combinational Attacks

3.3.1 Testing-based Attack. The oracle-guided attack model was first used in the testing-based
attack by Rajendran et al. [60]. The attack leverages circuit testing principles, including justifica-
tion and sensitization. In the justification process, the output of a gate can be forced to a known
value by controlling one or more of its inputs. For example, an OR gate’s output can be justified to
1 by setting one of its inputs to 1. In the sensitization process, a net can be observed at the circuit
primary output through a certain path, which can be realized by setting all the side inputs of each
gate along the path to the non-controlling value of the gate.

Following the unified key-based model of an obfuscated circuit, the testing attack leaks the value
of key bits by sensitizing the output of the circuit to a single key bit. To leak this key bit to the
output, the gates on the path that goes from this key bit to the output need to be made sensitive
to the key bit. This requires setting the side inputs on these gates to non-controlling values. For
example, consider the circuit in Figure 4(a). By setting i3 and iy to 0 and 0, respectively, the input to
the key-gate Gs is justified to 0. Meanwhile, by setting i; and i, to 0 and 0, respectively, the output
of the key-gate G5 can be observed at the primary output 0;. Hence, after applying the input vector
{0000X}, if the output vector is {01}, then, we get k = 1; otherwise, we have k = 0.

It is simple to see that in the testing-based attack as soon as there are two key bits on a given
leakage path, where one of the key-bits cannot be suppressed with a chosen input pattern, the
output will depend on the value of both key bits. The original testing-based attack resorted to a
brute-force enumeration when faced with such multi-key paths. As such, the testing-based attack
is capable of reasoning only with input-output equations that have one unknown. One example of
the non-resolvable netlist is shown in Figure 4(a). We discuss defenses against such weak key bits
later in the article.

3.3.2 The SAT Attack. The SAT-based attack or SAT attack proposed in References [26, 87]
significantly enhances the deobfuscation efficiency. Unlike the testing-based attack it can work
with systems of input-output equations with an arbitrary number of key bits. The SAT attack
iteratively searches for input patterns that are guaranteed to prune incorrect key combinations
and has a termination criterion that guarantees that if the original hypothesis space C includes a
correct functionality it will find it within a finite amount of time.

Recall the example in Figure 4(a) and assume the correct key is 0, 1, 0 for ky, ks, k3, respectively.
Since the sensitization and justification condition cannot be satisfied for each key bit, the brute-
force attack has to be exploited, which requires at least 2° = 8 input patterns to prune all the
incorrect key combinations [26]. However, with the SAT attack, as shown in Figure 5, only three
input patterns are sufficient. As per Figure 5, the SAT attack at any point in the process only
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Fig. 5. Outputs for all possible key combinations for the netlist in Figure 4(a) for four input patterns (assume
the correct key bits are (1, 1)). The red “X” marks show input patterns ruling out incorrect keys.
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Fig. 6. The SAT attack [26] flow can be viewed as a set of transformations steps applied to a circuit that
represents a Boolean condition that will be refined to eventually resolve to a correct key.

picks input patterns (columns) that have disagreeing keys (disagreeing rows). This ensures that
no redundant query is made. As such the attack first picks {1, 1,0,0, X} and {1, 0,0, 0, X'} to query,
which returns (1, 1) and (1, 1). Any key combination that produces an incorrect output given the
patterns queried so far is pruned. Removing the rows that disagree with these observations, we
can move on to the next query that has disagreeing rows, which would be {0, 0, 0, 0, X'} rather than
{0,0,1,0,X} or {1,0,1,0, X}.

Enumerating such an attack table explicitly will be awfully inefficient. The SAT attack avoids
this by representing this table using concise Boolean formula/circuits. Figure 6 shows this process.
The first step is to model the ambiguity in the netlist with key-variables, i.e., move to a locking
formulation. Then a “mitter” circuit is built by copying the circuit and then connecting the output
of the copies to a comparator to create the mitter output M = (c.(i, k1) # ce(i, k2)). The attack
works with the circuit/formula F that is initialized to M. It is easy to see that M will be true if
there exists i, 121, and 122 such that the obfuscated circuit produces a different output for /21 versus
k; when the input is i.

The attack hence begins by satisfying Fy with o, l%l, and 122. This iy is referred to as a discrimi-
nating input pattern (DIP). The DIP is queried on the oracle, and we get §j, = ¢, (iy). Observing the
correct output ¢, (i), at least one of ¢, (i, 121) and c, (io, 122) should be different from ¢, (iy). Hence,
iy is guaranteed to prune at least one incorrect key combination. Hence adding this input-output
condition to F, will encode this information:

Fi=F A (Ce(iO’k) = Co(iO)) A (Ce({o, kO) = Co({O))-

Now by satisfying F; we are searching for a new DIP that can further prune the space of keys that
already satisfy (i, ¢, (io)). Such a process can be continued until F; is no longer satisfiable. At this
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10: end while
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12: return k; as exact key (a)
13: end function

Time to solve (s)

Fig. 7. Algorithm 1: The SAT attack algorithm. (a) Runtime for 21 different benchmark circuits with six dif-
ferent locking algorithms and four different overhead levels. Panel (a) is courtesy of Reference [75].
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Fig. 8. The truth tables for three different obfuscated circuits with four key bits and three inputs: (a) high-
error obfuscation, (b) low-error obfuscation, and (c) mixture of high-error and low-error obfuscation.

point, we can remove M from F; and only solve the I/O-constraints. This should return a correct
key if the c, included a correct key to begin with. Algorithm 1 shows this flow.

Although SAT is in general an NP-complete [24] problem, SAT problems that are deduced from
Boolean circuits can be solved quite efficiently with modern SAT solvers [24]. For traditional obfus-
cation schemes such as EPIC, the number of DIP queries that the SAT attack requires is extremely
small compared to the brute-force complexity. Figure 7(a), shows SAT attack runtime results for a
collection of 21 ISCAS and MCNC benchmark circuits obfuscated with various traditional locking
schemes. As can be seen the SAT attack is capable of resolving the correct key within a matter
of minutes to hours. It was observed in Reference [87] that the average number of discriminating
inputs is less than 50 and the average attack time is less than 2500s, which is in stark contrast to
the estimates for a brute-force attack that may require millions of years to finish.

3.3.3 Approximate Attacks. The SAT attack described above is an exact attack. It terminates
only when no more DIPs can be found, which implies that the recovered key k, if programmed into
ce will produce a perfectly equivalent circuit to ¢,. This works well for the traditional high-error
obfuscation approaches that randomly insert key-structures into the circuit. However, the exact
SAT attack is agnostic to the error rate of the obfuscation, which can cause problems when faced
with low-error rate obfuscation. Consider the example in Figure 8. Figure 8(a) shows the truth table
for an obfuscated circuit generated with a high-error scheme. Because the output error probability
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Fig.9. Algorithm 2: AppSAT algorithm enhanced with wire-disagreement analysis and termination checking.
(a) Runtime of the AppSAT attack on combinational and sequential benchmarks on compound schemes (Anti-
SAT + EPIC). The figures are adapted from Reference [75].

for each incorrect key is large, the number of incorrect keys pruned by one discriminating input
can be very large. For example, in Figure 8(a), the input pattern i® can prune four incorrect keys.
However, when the output error probability of the incorrect keys is small, it is less likely for one
DIP to disqualify a large number of keys as seen in Figure 8(b) where each discriminating input,
e.g., i', can only prune one incorrect key.

AppSAT was first proposed to allow the SAT attack to keep track of the error-rate of intermedi-
ate keys. Compared with the exact SAT attack described in Algorithm 1, AppSAT follows the same
steps including searching for and storing DIPs. The main difference comes from the output error
probability estimation step. In AppSAT, after every fixed number of iterations, a key satisfying all
the existing input-output patterns is extracted from the SAT-solver. Then, the output error proba-
bility of this key is estimated through random sampling. If the error probability is larger than the
given threshold, then AppSAT continues to search for the discriminating inputs. Otherwise, the
algorithm just stops and returns the key.

One important idea in AppSAT is that during the random sampling step, new DIP’s are discov-
ered every time the oracle and c, disagree on a random input. Some of these DIPs are also stored in
back into the SAT problem. This causes the high-error keys to be pruned first. For example, in Fig-
ure 8(c), k! and k? have low error probabilities while k'3, k'*, and k' have high error probabilities.
In the first iteration of AppSAT, all the input patterns except i’ are discriminating inputs. Then,
when one input is randomly selected from i° to i®, the probability for k'3, k!4, and k' to be pruned
is 4/7, which is much higher than the probability for k! and k? to be pruned. Because of this prop-
erty, that keys with low error probabilities can be obtained within a small number of iterations.

AppSAT can be used to attack compound obfuscation schemes that use a combination of low-
error schemes plus a high-error scheme. Figure 9(a) shows the deobfuscation time for AppSAT
evaluated on the ISCAS and MCNC benchmarks obfuscated with such compound schemes. Double-
DIP [84] and the bypass attack [101] followed AppSAT with techniques to target specific com-
pound schemes. DDIP added a property to the SAT formula that causes the attack to mine for
DIPs can disqualify at least two incorrect keys allowing it to terminate only when the low-error
scheme is left to recover. In Reference [80] similar termination conditions were further studied
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and added to AppSAT. In addition, AppSAT was later augmented with removal attacks [106] and
wire-disagreement analysis [80], which are tools that use the intermediate error rate of the hy-
pothesis for locating hot-spots in the circuit during the deobfsucation process. Algorithm 2 shows
AppSAT with the various intermediate analysis steps. DDIP has a flow similar to the original SAT
attack in Algorithm 1 except the mitter M has 4 or more keys rather than 2. In Reference [5], a
satisfiability-modulo-theory (SMT)-solver to increase the number of incorrect keys that each DIP
disqualifies to speed up process.

Another attack that can be categorized as an approximate attack and was proposed before the
SAT attack’s invention, is the hill-climbing attack [56]. This attack defines a key hypothesis kj
along with a best key hypothesis kpj,. The key bits in kj are considered as parameters in an op-
timization problem where the cost function is the disagreement probability between c, (i, kj) and
¢, (i). Since the exact disagreement probability cannot be calculated efficiently it is estimated with
random sampling similar to AppSAT. in each iteration, kj is derived by making changes to kpp,.
Then the error rate for kj is estimated, and if the error rate is better than the error rate of the
best key hypothesis kjp,, then kj, becomes the new kpp. The hill-climbing attack uses simulated-
annealing for deriving kj, from kpj. It first derives a bit-flip probability using the simulated-
annealing formula and then flips bits in kj according to this probability. This results in bits being
flipped at a higher rate in the beginning of the attack when the error rate for kpj, is high. As the
error rate drops and we get a better key hypothesis the flip rate drops exponentially finally con-
verging on a low error key. A great advantage of the hill-climbing attack is that it does not rely on
NP-complete SAT queries like SAT attacks.

3.4 Oracle-Less Attacks

The oracle-less (OL) model assumes that the attacker only has access to the netlist for ¢, and
knowledge of the obfuscation scheme used. Due to this constrained set of resources that the at-
tacker has, oracle-less attacks are quite attractive. The oracle-less attacker has to study the small
statistical variations in the structure and functionality of the obfuscated circuit itself to recover
the original circuit.

So far oracle-less attacks have focused on logic locking instead of camouflaging as the OL model
is more likely in the locking domain. One major theme for such attacks is to study the vicinity of the
inserted key structure, since key-logic insertion typically effects only the locality of the insertion
site, which we refer to as a circuit cut. Then various key possibilities are enumerated for this circuit
cut and then the cut is simplified under each key. It turns out that many such key possibilities
when simplified result in cuts that can be pruned given general known properties/rules of high
performance circuits. For instance, El massed et al. [51], who proposed the first oracle-less attack
used the fact that the simplified cut should not deviate vastly from the original circuit minus the
key-structure to prune such improbable key assignments. In Reference [40], the fact that some
keys produce circuits with low testability is used to prune these keys, since the original circuit is
typically synthesized to be highly testable.

Another idea is to resort to statistical analysis and machine learning. The original circuit or cir-
cuit cut has statistics P(c,) and the obfuscated circuit has statistics P(c.). Ideally, these statistics
should be independent meaning that P(c.) = P(ce|c,). In practice, however, schemes that simply
insert fixed key-structures into the circuit with limited post-insertion randomization will demon-
strate dependent statistics. This means that given P(c.) itself with no additional information, the
space of possible ¢,’s shrinks. These statistics can be mined with various statistical inference tools,
including machine-learning schemes, and then reversed. Chakraborty et al. carried this out in Ref-
erence [12] against random XOR/XNOR insertion with a success key bit recovery rate of around
90% on a subset of ISCAS benchmarks.
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Algorithm 3. Given sequential-oracle access to ¢, and the [BNark [# Disc Inputs | Max Steps | Time (3) Termmation
expression for the sequential ¢, return an exact key k;. min | max min | max [min _|max | UC/CE/UMC
. ESNENE 10 |10 |11 |37 10/0/0
1: funFtlon SEQDECRYPT(Ce, €, as black-box) 319 37 0 110 3 59 10/0/0
2 je0be1 w382 |25 |36 50 |60 | 3482 41129 | 10/0/0
3 M  ce(i, s1, k) # ce(i, 52, k2) s100 |18 |31 50 |90 |4921 |526499|6//0/1
4 Fj < true sii |16 |35 50 |90 | 3379 |52081 |2/0/5
5: while !TErmINATION(F;) do 510 7 |15 30 [40 300 [29121 [10/0/0
6 if BMc(Fj A M, G(-M), b) — Fail then $526 29 |39 120 | 120 | 37979 | 139252 10/0/0
A £y % 820 |14 |20 10 |10 |506 |1030 |10/0/0
7 05 < ¢o(l)) ijf_ Cex(G(~M)) b . w32 |12 |2 10 (10 [370 | 1211 10?0/0
8 Fj1 = Fj A (el (I, k1) = O05) A (e (Iy, k2) =O;5) 53 (10 |22 10 [10 |365 |1700 |10/0/0
9 JeJj+1 s1196 |14 |44 10 |10 | 795 | 2386 | 10/0/0
10: else 5378 |7 |- 30 |- 1350 |- 0/1/0
11: b bx2 50231 B BRE B B 0/0/0
12: end if L0424 |9 0 [10 [31 |11 |10/0/0
13:  end while L0 |26 | 117 20 [20 [619 | 10527 [10/0/0
14 satisfy F; with ky and k b14 14 |21 10 |10 | 14308]34273 |10/0/0

15: return k; as key

16: end function
Fig. 10. Algorithm 3: The model-checking attack algorithm for deobfuscation under the sequential-oracle-
guided (SOG) attack model. Line 6 makes a call to a BMC solver with the G(—M) property. Line 5 checks for
termination conditions such as checking if the next-state and output functions are unique under the current
set of DIPs. The table to the right shows data on ISCAS sequential benchmarks. The step column represents
the depth of the queries (number of clock cycles). The table is adapted from Reference [25].

3.5 Sequential Oracle-guided Attacks

The oracle-guided (OG) attack framework can be extended to the sequential oracle-guided attack
(SOG) model discussed earlier. In a sequential attack model the attacker cannot observe/control
the internal state of the oracle c,. The attacker can reset the IC and then pass it inputs and observe
outputs. Meade et al. [52] first proposed a method for extending the SAT attack to sequential
circuits via unrolling. The idea is to simply unroll the sequential ¢, up to b cycles. This unrolled
circuit denoted as ¢/ (I, , k) now has b input vectors I and b output vectors. The latch inputs in
cycle i are connected to latch outputs in cycle i + 1 except for the first cycle latches, which are
initialized with the reset state r. This unrolled circuit is a combinational circuit, and hence the
SAT attack can be directly replicated. An unknown initial state can be modelled by additional
virtual key variables.

Checking Boolean properties by unrolling a circuit and passing it to a SAT solver has been the
topic of research in the verification domain for years, and it is known as the Bounded-model-
checking (BMC) problem for which an array of tools and techniques exist. El Massad et al. [50]
presented the first in-depth analysis of sequential attacks using a model-checking formulation.
They presented several termination criteria for knowing when to exit the sequential attack, a de-
tail that was missing in Meade et al.’s [52] work. They showed how the attack runtime increases
drastically for circuits that do not leak their internal state to the output with high error. Yet it
was observed that very large sequential circuit can be doebfuscated with only mildly more run-
time than the combinational SAT attack. The sequential/model-checking attack algorithm along
with El Massad et al.’s data from Reference [50] is shown in Figure 10. In Reference [79], the
model-checking attack runtime was improved drastically by dynamic simplification of the circuit
conditions when unrolling. Before the arrival of these attacks, several works [32, 33, 74] proposed
scan-chain deactivation/subversion/obfuscation as a way to secure locking against oracle-guided
attacks. While limiting scan-chain access is a low-cost way to significantly improve security over-
all, smaller obfuscated circuits with high-entropy/low-depth behavior may still be vulnerable to
sequential attacks.
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Fig. 11. Two-input threshold voltage defined gate design for different functionalities: (a) schematic and (b) an
example for an AND gate. The figures are adapted from Reference [27].

4 ON DEFENCES

In this section, we review locking/camouflaging schemes themselves. We start by discussing the
nano-technology aspects of these techniques and then delve into the netlist-level algorithms used
to insert such structures into the original circuit. Along the way, we also discuss attacks that are
more specific to the particular obfuscation scheme.

4.1 Camouflaging Cell/Device-level Primitives

A camouflaged nano-device is a silicon-level primitive that creates ambiguity for a microscopy-
based reverse engineering process. Such structures can be implemented by special fabrication
flows. We review some of these techniques herein. Note that there are theoretically many ways
for creating ambiguous nano-structures; however, they should be evaluated on the basis of metrics
such as manufacturing cost overhead (in terms of added masks and steps), resiliency to reverse en-
gineering techniques, and footprint size per the amount of ambiguity that they create. It is difficult
to completely isolate the nano-device from the cell that uses it and how the cell is incorporated in
the netlist. Therefore, we will discuss some cell designs along with the nano-device.

One major approach to building camouflaging structures is to utilize doping levels [27]. One
way to use doping is to create gates that have similar metal and poly patterns but with different
doping patterns [20, 42, 85]. In addition, the doping level of a transistor affects its on/off-resistance,
and this difference in resistance can be detected with a sense-amplifier circuit. An example of this
is shown in Figure 11(a). In this cell when the resistance of the right branch is more than the left
branch through selecting the doping levels of the transistors in each branch, the sense amplifier
can implement an array of functions. The doping level of the 16 different transistors can allow
implementing all 16 different two-input Boolean functions. The cell introduces a particularly high
overhead. For example, when the cell functions as an AND gate, compared with the existing design,
it introduces 70% delay overhead and 160% area overhead.

Unfortunately, camouflaging based on doping types (p-type versus n-type) cells are not suffi-
ciently secure against Scanning-Electron-Microscope (SEM) and Focused-Ion-Beam (FIB) imaging.
Since the doping level in the substrate interacts with the electron-beam coming from the SEM, by
varying the intensity level of the electron-beam, the doping of the substrate can be differentiated.
Figure 12 shows such a doping-type camouflaged circuit under an optical microscope, SEM and
FIB. Smaller variations in doping intensity (lightly n-doped versus heavily n-doped) may be harder
to detect under SEM/FIB [73].
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Fig. 12. Optical, SEM, and FIB imaging of a doping-based camouflaged cell reveal its functionality. Image
courtesy of Reference [89].
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Fig. 13. Example of the camouflaging cell design proposed in Reference [43]: (a) top view, (b) cross section,
and (c) overhead for different functionalities.

A more secure and light-weight approach to building camouflaging primitives is based on
dummy contacts/vias. A dummy contact is a via that appears similar to a normal via from the top
view but is in fact non-conducting. This can be implemented by a via with a middle-gap/insulator
or a via with a non-conducting material such as MgO as proposed in Reference [15]. This can be
used to build camouflaging cells or used to obfuscate interconnects by adding additional wires and
dummy vias to the circuit. An example of a camouflaging cell utilizing such vias is shown in Fig-
ure 13. Depending on the connectivity of the vias in group A, B, and C, the cell can work as an INV
or a BUF. The overhead of the cell depends on its functionality as is shown in Figure 13(c). Dummy
vias may be able to achieve the ubiquitous ambiguity notion discussed in Section 3.2, where the
attacker may have to suspect all vias in the design as being fake.

4.2 Locking Cell/Device-level Primitives

Logic locking unlike camouflaging requires a nano-device that is programmable, as pro-
grammablity is the foundation of logic locking. There are various approaches to programming
key-bits into a locked circuit and different approaches can in fact have vastly different security
implications [3, 107]. This is why it is critical to consider the programmable device technology
when analyzing netlist-level security.

The first and simplest approach to programming keys is to use conventional volatile CMOS
circuits such as a scan-chain of latches/DFFs. In this case, the programmable logic will resemble
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the rest of the CMOS circuit and can potentially create a scenario in which the attacker does not
know which parts of the circuit are secret keys. However, since the key logic is volatile, the key
may have to be programmed on every start-up of the chip. Hence, it is easy to see that some sort
of nonvolatile memory is necessary.

At this point, a critical question of activation in a locking flow arises [107]: Who and at which
point in the supply chain will program the locking key into the device? The answer to these questions
have security implications and are in fact tied to the question of the cell/device used in locking.
There are a few possible scenarios. If the end-user is to program the secret key, then he/she can
use an external nonvailte memory to store the key. This leaks the key to the end-user, which if
he/she collaborates with the foundry will violate protections against the foundry. The key can be
programmed by a trusted system designer (PCB designer and assembler), which places the external
nonvolatile memory on the PCB and programs the key and sells the system to an untrusted end-
user. In this case, if we are to hide the key from the end-user, then the nonvolatile external memory
will have to be tamper-resistant plus the board-level communications will have to be secured with
encryption, and so on. A collaborative attack between the system designer and the foundry will
again violate security against the foundry.

It is easy to see that the activator party can almost always violate the protection scheme if this
party is untrusted and collaborates with the foundry. One may think of avoiding this by releasing
an encrypted version of the key to the activator and have the fabricated IC decrypt the encrypted
key into an internal secret key. This, however, will require another secret string used for decryption
to be stored on the IC, which itself will have to be programmed by a trusted party into a nonvolatile
tamper-resistant medium. Furthermore, to prevent one key from unlocking all the other chips
a unique per chip signature is required, which calls for a Physical-Uncloanable-Function (PUF).
Again, a trusted facility will be required to characterize this PUF post-fabrication. The PUF and
key decryption infrastructure may be removed or tampered with by the foundry as well.

Given the above discussions it becomes clear that a trusted activator party along with a non-
volatile tamper-resistant storage are unavoidable in a locking-enhanced supply chain. Plus, having
this nonvolatile storage on-chip as opposed to off-chip will avoid the many issues associated with
an off-chip key-storage that brings us to the point that an on-chip tamper-resistant nonvolatile
technology is critical to secure and low-overhead locking. We discuss some of these technologies
herein.

Embedded Flash and EEPROM based on floating-gate devices are a good candidate for key-
storage [31, 36, 38]. These devices can be placed in an array and read-out using a sense-amplifier
and then fed to a scan-chain of key-bits. Another approach is to integrate them directly into the
cells as multi-level resistors that can be read locally with an amplified tree structure similar to Fig-
ure 11(a). Embedded Flash is currently an industry standard and scales well into deep submicron
technologies. The state of Flash and EEPROM cells can be recovered with tedious reverse engi-
neering processes using controlled electron-beams [23], but this becomes more and more difficult
as the technology scales.

Another candidate for locking is Resistive-RAM (RRAM). Metal-insulator-metal (MIM) struc-
tures can be used to implement programmable resistances also known as memristors. If the R,/
Ry ratio of these cells is high and they have a low R,,, then they can be placed directly on
the signal path [21]. The cell shown in Figure 14 leverages this to implement an INV/BUF cell.
Magnetic-Tunneling-Junctions (MTJs) can also implement double-state resistors. However, they
have a much smaller R,,/Ros with high R, levels. This makes it difficult to insert them onto sig-
nal paths and instead necessitates sense-amplifier-based reading of their value. The value of MTJs
can also be read out with magnetic-force-microscopy (MFM). If the area penalty for using a sense-
amplified tree are acceptable to a designer, then CMOS and FinFET devices themselves can be used
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Fig. 14. Camouflaging cell design leveraging memristors: (a) schematic of the cell that can function as an
INV or a BUF; (b) the cell layout. The figures are adapted from Reference [65].

as programmable resistors through intentional hot-carrier-injection (HCI) as done recently in Ref-
erence [2].

Fuse and Anti-fuse technology are one-time-programmable (OTP) devices. These devices can be
very suitable for locking, since in locking we typically do not require multi-programming ability.
There are various fuse/anti-fuse device designs with different footprints and security levels. Planar
fuses, for instance, may not be secure as their state is visible from the top view due to electro-
migration. Metal-to-metal antifuse [22] is a great device for interconnect obfuscation, as it takes
no substrate space, can have a layout similar to a normal via, and its state is very difficult to
determine under microscopy [10, 22]. Fuse technology in advanced nodes seems to be moving
toward using the gate-oxide in CMOS and FinFET transistors as fuses themselves [1], which may
be due to scaling issues with metal-to-metal antifuse. Given the unique benefits that such metal-to-
metal antifuse brings to locking as shown in Reference [78] it may be reasonable for the industry
to reinvest in deeply scaled and reliable metal-to-metal programmable switches.

4.3 Netlist-Level Obfuscation Schemes

Given the original netlist and the basic obfuscation building blocks, a defender must synthesize
a new, obfuscated netlist to maximize the resilience against deobfuscation at minimum power,
performance, and area cost. In this section, we review the following representative netlist-level
schemes, including random gate insertion [69], the clique-based scheme [59, 61], point-function
schemes [43, 99, 105], cyclic obfuscation schemes [77, 78], FSM transformation, and timing-
based/parametric obfuscation schemes [114].

4.3.1 Random Gate Insertion. The first systematic obfuscation scheme, termed EPIC, was pro-
posed in Reference [69]. The main design objective of EPIC was to achieve a large number of
possible key combinations and guarantee that only one unique key combination can successfully
activate the chip. This design objective can be achieved by randomly inserting key-controlled
XOR/XNOR gates into the original circuit [69]. An inserted XOR gate means that the key bit that
controls it has to be zero for correct operation. An XNOR creates the opposite. The fact that the
correct key bit in XOR/XNOR insertion affects the type of gate that is inserted is itself a source of
leakage of secret information that is exploited in oracle-less attacks.

Later on, a look-up-table (LUT) insertion strategy was proposed [8]. In this technique, k-input
cuts in the circuit are replaced with k-input LUTs that are programmed with key bits. Since such
a cut replacement schemes is a reductive approach (parts of the circuit are removed and replaced),
it is much more secure against oracle-less attacks.

4.3.2  Clique-based Scheme. Once the testing-based attack was proposed it was observed that
randomly inserting a small number of elements in a large netlist can leave many key bits isolated

ACM Transactions on Design Automation of Electronic Systems, Vol. 24, No. 6, Article 65. Pub. date: September 2019.



IP Protection and Supply Chain Security through Logic Obfuscation 65:19

Cannot be
propagated
w/o controlling
the other key

B 1)) Dams @ i
: o1 ke 01 w 02

Bop P >
() (b) ()

Fig. 15. Example of interfering key-gates: (a) concurrently mutable convergent key-gates, (b) sequentially
mutable convergent key-gates, and (c) non-mutable convergent key-gates. The figures are adapted from
Reference [59].

and prone to the testing-based attack. As such, Rajendran et al. proposed a clique-based strategy
that aimed at ensuring that various key bits are dependent [59, 61]. The clique-based method is
based on constructing a key-dependency graph where key bits are nodes that have an edge con-
necting them if they interfere with one another on a path from a primary input to an output.
Cliques in this graph represent sets of keys that all interfere with one another. This notion can
be extended [59] to account for the fact that even if two key bits interfere, there may be an input
pattern that can mute one of the key bits and isolate the other one. Hence, the authors further clas-
sify each pair of interfering key-gates as concurrently mutable convergent key-gates, sequentially
mutable convergent key-gates, and non-mutable convergent key-gates. The examples of each cat-
egory are shown in Figure 15. In Figure 15(a), the two key-gates, i.e., K; and Kj, are concurrently
mutable as K;’s key bit can be determined by setting the signal B to 0 to mute K, while K;’s key bit
can be determined by setting the signal A to 1 to mute K. Hence, for concurrently mutable key-
gates, the attackers can select input patterns that mute any one of the two key-gates and sensitizes
the other one. In Figure 15(b), the two key-gates are sequentially mutable as K can be determined
by setting the signal A to 1 to mute K; while K; cannot be determined directly without knowing
K. For sequentially mutable key-gates, the attackers have to first mute K to sensitize K and then,
determine K. In Figure 15(c), the two key-gates are non-mutable as the attackers cannot mute ei-
ther K; or K;. The authors claim that for non-mutable key-gates, the brute-force attack must be
conducted and, thus, provide the best resilience against the testing-based attack. Therefore, in the
clique-based scheme, the key-gates are inserted iteratively to form a clique, which maximizes the
pairs of non-mutable key-gates and increases the resilience against the testing-based attack.

It was later shown in Reference [98] that the computationally heavy clique analysis may not be
necessary to create such interference, since inserting a singe key-gate near the output means that
no key bit can get through to the output without interfering with at least one more key bit. Plus,
since all the keys in this cone converge on each other at the output, they are all interfering with
one another.

4.3.3 Fault-based Scheme. Rajendran et al. [62] studied the notion of error rate in obfuscation.
They defined the hamming distance of an obfuscation scheme by the average number of output
bits that flip as a result of flipping a single key bit. They then proposed using fault-analysis to
insert XOR and MUX key-gates in locations that maximize the fault impact, which was a metric
describing the degree to which a fault in a particular wire would affect the output. This leads to
naturally higher error rates as the circuit’s output is more sensitive to changes in these locations.

All the above obfuscation strategies are referred to as traditional schemes as they predate the
SAT attack. These schemes have various resiliency levels against oracle-less attacks, and testing-
based attacks. They also can have different overhead levels. Yet none of them are able to withstand
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Fig. 16. A point-function scheme example. The truth table on the right demonstrates that a SAT attack will
have to query all input patterns to disqualify all possible keys (red cells). Figure and table are adapted from
Reference [80].

the SAT attack with low overhead on decent sized combinational circuits. Subramanyan et al. [87]
showed how all the above schemes when applied to the ISCAS benchmarks with thousands of
gates with overhead values bellow 25% can be attacked in a matter of minutes to hours. Note that
all these schemes also produce acceptable error rates.

4.3.4  Point-Function-based Schemes. The first SAT-resilient locking/camouflaging schemes
were based on using point-functions [43, 99, 105, 108]. A point-function (essentially a comparator
circuit) is a function P(x, x,) that outputs 1 when x = x, and 0 otherwise. Such a comparator can
be implemented with an AND-tree with inputs that are XORs of bits in x and x.. By incorporat-
ing these point-functions into a circuit in specific ways it is possible to create obfuscated circuits
that need at least an exponential number of queries to be exactly resolved. An example of such a
point-function scheme along with its two-dimensional truth-table can be seen in Figure 16. It can
be seen from this figure how two point-functions can be used to create a low-error obfuscation
that requires the majority of the input space to be queried to recover the exact functionality.

While the tradeoff between error rate and query count seems intuitive, one question is if it can be
described by tight bounds. In Reference [115] this tradeoff was modeled as a matrix cover problem
and an upper bound on the product of error rate and minimum query count was obtained. It was
later shown in Reference [80] how this bound is inaccurate as there exists schemes that surpass
this bound and finding the accurate bound in special cases can be reduced to an open problem on
regular hypergraphs.

Li et al. [43] proposed a point-function scheme based on searching in the original circuit itself
to find a naturally occurring AND/OR-tree and obfuscate it by inserting XOR-gates at its inputs
in a similar way. The approach in Reference [43] is quite attractive for circuits that naturally have
such point-functions in their structure; however, this may not be true in the general case. Anti-SAT
was the first point-function scheme that added such structures into the circuit [99]. By taking the
AND of two point-functions with two different key vectors (k; and k;) as seen in Figure 17(b) an
exponential minimum DIP count is achieved. References [80, 115] included tree-based schemes and
Reference [104] presented a hamming-distance-based block to increase the error-rate of such SAT-
resilient schemes at the cost of drops in query count with various tradeoff rates. For example, in
Reference [80] error rate increases with 3/ while minimum query count drops with 2. In general,
if function h(i, k) is used to corrupt the output, where the onset size of h(i, k) for each fixed k is
M, then one can expect a minimum query count of at least 2" /M [80, 115].

One main challenge with point-function schemes is their vulnerability to removal attacks [106].
Since Anti-SAT and Li et al.’s approach both insert structures into the circuit without removing
anything from the original circuit, if the attacker can find these structures, then they can be re-
moved from the obfuscated circuit returning the original circuit. One proposal for thwarting such
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Fig. 17. Different generations of point-functions schemes. (a) Insert and correct with a correct-key com-
parator. (b) Anti-SAT style with a double key vector. (c) Corrupt-and-correct by inserting a point-function,
resynthesizing and then using a point-function-based corrector. (c) A general puncture and correct approach,
where ¢, is first punctured on select input patterns and is then corrected with a correction block. The de-
fender must hide the location of the punctured/corrected inputs at all costs.

(@) (b)

Fig. 18. Obfuscating the inserted AND-tree structure: (a) inserting key-logic in the tree and (b) connecting
internal tree nodes to other circuit locations.

attacks was to obfuscate the point-function structure itself. This can be done by adding additional
key-gates into the AND-trees as seen in Figure 18(a) or by connecting internal nodes to other
circuit nodes through mutable key-logic (a key-gate that kills the propagation of a signal by con-
figuring the key) as seen in Figure 18(b).

It is not clear exactly how effective AND-tree obfuscation is against removal attacks, especially
since AppSAT’s wire-disagreement analysis can spot the tip of low-error blocks well into the de-
obfuscation process [80], at which point the AND-tree obfuscation key bits are likely resolved.
Regardless, CamouPerturb [105] was the first to address the removal attack issue with the “corrupt-
and-correct” approach. The idea in CamouPerturb was to first corrupt the original circuit by flip-
ping its output on a small set of input patterns in a way that is difficult for an attacker to recover
the flipped locations. Then the tree logic is inserted to compensate for the flipped patterns as seen
in Figure 17(c). In this way, even if the attacker identifies and removes the correction circuitry,
they are left with a circuit that is incorrect on a few unknown input patterns. This theme was
later extended in References [70, 71, 108] where a look-up-table was used to correct the circuit on
select input patterns. This makes the corrupt-and-correct scheme as seen in Figure 17(d) a general
strategy for thwarting exact attacks. Several works have followed that attack corrupt-and-correct
schemes that leak the punctured patterns through structure or functionality [83, 86, 102, 117].
Given these, it is possible to surmise that as long as (1) the number of input patterns on which ¢,
is punctured/corrupted is small, (2) the punctured circuit does not leak the location of the punc-
turing, and (3) the correction circuit itself does not leak the location of the puncturing, then the
corrupt-and-correct scheme is provably secure in the exact-attack threat model.

Security under the exact attack model ensures that the attacker will not recover a perfectly
functioning circuit, i.e., there will be locations in the input space for which the pirated circuit may

ACM Transactions on Design Automation of Electronic Systems, Vol. 24, No. 6, Article 65. Pub. date: September 2019.



65:22 K. Shamsi et al.

@ (b) ©

Fig. 19. (a) Example of cyclic obfuscation, (b) example of a reducible loop with a single entry point, and (c) an
irreducible loop with two entry points (each node represents a gate and each edge represents a connection
between two gates). The figures are adapted from Reference [77].

misbehave. This in itself can be useful as a watermarking technique as the defender can test these
patterns on the circuit. Despite this, if the goal of the attacker is the easier goal of approximation,
then point-function schemes are incredibly weak. In fact, the resilience of point-function schemes
against exact attacks is exponentially inversely proportion to their approximation resiliency. For
a p-bit point-function, 27 queries are required to exactly recover the original functionality yet the
error rate of the scheme is 1/2”. Compounding these schemes with traditional high-error schemes
does not help due to attacks such as AppSAT and DDIP.

4.3.5 Cyclic Interconnect Obfuscation. Shamsi et al. was first to propose a cyclic obfuscation
scheme [77]. Cyclic obfuscation is any obfuscation that creates an obfuscated circuit that is not a
Directed-Acyclic-Graph (DAG) circuit. This can be achieved by inserting feedback paths controlled
by key-bits. The idea is that even though the obfuscated circuit is cyclic, under the correct key
the cycles open up and the circuit behaves combinationally. However, incorrect keys can lead to
oscillating circuits. An example of cyclic obfuscation is shown in Figure 19(a).

Shamsi et al. contended that such cycles can thwart SAT attacks. When a cyclic circuit is con-
verted to a SAT formula through the Tseitin transform, there are a few possibilities. If the circuit
has internal oscillatory nodes, then the SAT formula representing the circuit is not satisfiable and
the circuit is not combinational. Another possibility is that the circuit will have no oscillatory
nodes, but the output of the circuit is not uniquely determined by its inputs. In this case there will
be internal wires in the cyclic circuit, where a choice on their initial value will affect the function’s
output. Such a circuit is not combinational. If such a circuit is added to the mitter in the SAT attack,
then the SAT attack will get stuck in an infinite loop, since the choice of internal wires will allow
the SAT solver to keep satisfying the mitter regardless of the choice of keys and inputs just by
flipping internal wires.

Shamsi et al. proposed two structural criteria to ensure that feedback paths cannot be removed
by a simple graph traversal. The first criterion is that loops need to have multiple entry-points
otherwise they are removable. For example, the loop in Figure 19(b) is reducible as it has a single
entry point, i.e., g;. Hence, by breaking the edge es, the loop can be safely removed. In contrast, the
loop in Figure 19(c) is irreducible as it has two entry points, i.e., g; and g,. The second criterion is
that more than 2 edges in a loop have to be “removable” so that there exist multiple ways to break
the loop. An edge is removable if the attacker is able to modify the key to remove an edge from
the loop without creating gates with dangling inputs or outputs. For example in Figure 19(c), only
e; can be removed, since if e; or e; is removed, then the output of g; or g, becomes dangling.

Zhou et al. [116] was the first to propose a SAT attack that is capable of breaking cyclically
obfuscated circuits. This attack, called CycSAT, uses a pre-processing step to extract a “non-cyclic”
condition on the key NC(k). The NC(k) condition is satisfied by keys that result in non-cyclic

ACM Transactions on Design Automation of Electronic Systems, Vol. 24, No. 6, Article 65. Pub. date: September 2019.



IP Protection and Supply Chain Security through Logic Obfuscation 65:23

Fig. 20. Cyclic wire obfuscation leveraging a crossbar structure. The crossbar can be implemented with mul-
tiplexers and a scan-chain as well, however, with significantly more area overhead. Figures are adapted from
Reference [78].

solution for c.. By ANDing the mitter in the SAT attack with this condition the attack remains
within the space of non-cyclic keys and terminates with a non-cyclic and correct solution. The
condition is extracted by first finding a feedback-arc-set (FAS). A FAS is a set of edges that if
opened up in a cyclic graph will make it acyclic. Each wire w in the FAS is opened up to w and w’
where the transitive fanin on w’ includes w. The NC condition is then constructed by ensuring
that each w’ is independent from w, i.e., the feedback arcs are opened. Using the CycSAT attack
the authors were able to deobfuscate benchmark circuits obfuscated with Shamsi et al.’s cyclic
obfuscation scheme [116] in runtime similar to SAT attacks on traditional schemes.

Rezaei et al. [65] and later Roshanisefat et al. [67] showed that a problem during the CycSAT at-
tack is that when studying the cone that connects w to w’ for extracting part of the NC condition,
this cone is in fact cyclic itself. Analyzing the independence of w’ and w when they are related by a
cyclic circuit is a challenge. They contend in their paper that this challenge requires all simple cy-
cles in the circuit to be enumerated and opened explicitly with non-cyclic conditions. Both papers
propose cyclic obfuscation schemes that exploit this limitation in the CycSAT attack. In addition,
if the original circuit itself is cyclic-but-combinational (such circuits exist and were first studied
in Reference [6]), then the CycSAT attack becomes more complex, which in turn can be used to
improve cyclic defenses, which we refer to as “cyclic+cyclic” schemes. In Reference [64], unreach-
able FSM states were used to implement cyclic+cyclic locking. Later, the Behavioral SAT attack
(BeSAT) was proposed in Reference [82] to overcome CycSAT’s limitation by detecting cyclic keys
and banning them from the SAT solver on the fly as the attack advances.

Cyclic obfuscation schemes showcase the power of interconnect obfuscation as opposed to gate-
insertion. From a silicon implementation perspective of interconnect locking, Shamsi et al. pro-
posed an antifuse crossbar-based obfuscation that can create very dense cyclic interconnect ambi-
guity with little substrate overhead as the antifuse elements are inserted in the metal layers [78].
This scheme is shown in Figure 20, where a crossbar is used to program a two-dimensional ar-
ray of antifuse devices bringing about area savings in terms of programming transistors. As for
camouflaging, interconnect ambiguity can be created with much smaller overhead compared to
gate-insertion using only dummy contacts and extra wires fitted into the empty routing spaces in
the layout. Patnik et al. [55] proposed full-chip camouflaging by flooding the circuit with dummy
contacts and wires. Their results on large circuits show significant resilience against exact and
approximate SAT attacks with minimal overhead under the combinational oracle-guided model.

4.3.6  Timing-based Parametric Obfuscation. Parametric obfuscation was proposed as a way to
thwart oracle-guided attacks. The idea is to create an obfuscated circuit that is functionally equiv-
alent to the original circuit and that the key only changes other properties of the circuit such as its
timing. For instance, under an incorrect key the circuit will take much longer to process its inputs.
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Fig. 21. Conventional timing and wave-pipelining: (a) Single-period clocking; (b) pipelining with two data
waves; (c) timing/spatial diagram for wave propagation on a wave-pipelining path. The figures are adapted
from Reference [114].

In Reference [100], besides regular XOR/XNOR-based obfuscation building blocks, gates that
have delay values that are tunable by setting key-bits are inserted in the circuit. Without knowl-
edge of the correct key, the attacker cannot operate the chip, since an incorrect key may result
in violation of setup/hold timing constraints and corrupt outputs. Unfortunately, this scheme falls
for the pitfall we discussed in Section 3, since it only prevents attackers from activating a pris-
tine locked IC. The scheme in fact does not hide the Boolean function at all, since the tunable
delay elements do not alter the Boolean expression. Furthermore, the attacker can simply set all
delay elements to their highest possible delay and then slow down the clock and operate the cir-
cuit. Two works [5, 11] have followed this work with oracle-guided attacks that model the timing
difference using equations on the key and use SAT-based and satisfiability-modulo-theory (SMT)
solver-based algorithms to query and deobfuscate the circuit.

Given a parametric locking scheme that does not hide the Boolean functionality, all the attacker
has to do to pirate the design is to resynthesize the recovered Boolean expression into a fast and
timing-accurate logic. This is a trivial task for combinational logic given state-of-the-art synthesis
and optimization tools, which is why the scheme discussed above [100] is insecure. For the case of
larger sequential designs, this, however, can become challenging. Such an approach was presented
in Reference [41] in which the FSM is augmented with stall cycles that activate if an incorrect key is
used and hence an incorrect key can result in a much slower circuit. A somewhat different variant
was later discussed in Reference [109]. These schemes have not received the same attack attention
as in Reference [100]. Note that it is also possible to use point-functions to corrupt a critical signal
in the design and hurt its performance as shown in Reference [113].

A timing-based locking scheme that avoids the flaw of Reference [100] is the one in Refer-
ence [114], which obfuscates the circuit timing by introducing multi-cycle paths. As shown in Fig-
ure 21(a), conventionally, all the paths in a combinational block operate within a single clock cycle.
Reference [114] deliberately removes some flip-flops, e.g., F, in Figure 21(a), to convert single-cycle
paths into wave-pipelining paths. On a wave-pipelining path, e.g., the combinational path from F,
to Fs in Figure 21(b), there are more than one data waves propagating without a flip-flop separat-
ing them. To retain the same functionalities as the original single-cycle circuit, the second wave
cannot catch the first wave at any time during propagation as shown in Figure 21(c). Hence, the
following timing constraints must be satisfied for all the wave-pipelining paths with two logic
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Fig. 22. Dependency of the AppSAT runtime on the timing uncertainty and the number of waves on the
wave-pipelining paths for [ISCAS’89 benchmarks (a) s5378 and (b) s13207. The figures are adapted from Ref-
erence [42].

waves:
Terre + tp < dp < 2Tepp — tou, (1)

where dj, is the delay of the wave-pipelining paths and T represents the clock period time. t,
and tg,, denote the hold and setup time for a flip-flop.

By carefully removing the flip-flops and sizing the gates, the functionality of the design remains
unchanged with a mixture of single-cycle and wave-pipelining paths created. Due to the existence
of wave-pipelining paths, the attackers cannot recover the correct circuit functionality by simply
changing the clock period time. Therefore, they are forced to determine the timing scheme for
each path to decide whether it is single-cycle or wave-pipelining.

To determine the path timing, physical reverse engineering alone is insufficient as it is typically
difficult to measure the gate and interconnect delay accurately [114]. Assuming the delay extrac-
tion techniques incur an inaccuracy factor 7 (0 < 7 < 1), for a path with delay d,, if d,, satisfies

(1-1)dp < Tee < (1 + 7)d,, @)

then the attackers cannot decide whether the path is wave-pipelined by physical reverse
engineering.

Although the existing SAT attacks cannot be directly applied to such a parametric obfuscation
scheme, Li et al. proposed a transformation procedure that can enable a SAT attack to work around
this limitation [42]. This attacks was called TimingSAT. The security of this scheme depends heav-
ily on two factors, the timing uncertainty r, and the number of waves on the wave-pipelining paths.
Figure 22 shows the runtime of the TimingSAT attack versus these two parameters.

4.3.7 Sequential Obfuscation. The term sequential obfuscation is used in literature for two very
distinct concepts. First is a combinationally locked circuit where the attacker does not have access
to some internal state-elements, which is modeled by the sequential-oracle-guided (SOG) attack
model. Since attacks in the SOG model are quite novel, there has not yet been an extensive effort on
defenses targeting this threat model. The second branch of research that is referred to as sequential
obfuscation is that of FSM-obfuscation/transformation that we discuss herein.

An array of different research efforts on obfuscating FSMs can be broadly described as follows:
The idea is to take an FSM from the original circuit, and add a number of additional dummy states to
this FSM without in fact corrupting the original FSM. This way the original FSM will be embedded
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Fig. 23. Boosted FSM obfuscation. The original FSM (blue states) are augmented with many dummy states.
The PUF decides the startup state, which is conveyed back to the owner, who can then in turn inform the
end user of the correct path from the startup state to the original FSM.

in the sea of dummy states. The transitions are also constructed in a way to ensure that there
exists paths from some of these dummy states to the original FSM. Some of these dummy states
will have no path to the original FSM and arriving at one of them means there is no way to escape
back to the original FSM and are hence referred to as black-hole states. With such an FSM, if one
wants to operate the circuit with its original functionality, if the circuit starts up in one of the
dummy states, then the dummy states need to be traversed to arrive at the original embedded
FSM. Figure 23 demonstrates this augmented/boosted FSM.

There are several variations of the above idea. A prominent one referred to as Hardware Meter-
ing [37] uses FSM-obfuscation to create an IP protection protocol. This scheme, which is shown
in Figure 23, begins by adding augmenting the original FSM with dummy and black-hole states.
A unique random string extracted from a PUF is used to boot up the FSM in a random state. With
high probability, this state will be one of the dummy states rather than the original FSM. Then the
end-user sends this state to the owner of the IP. The owner, being the only party that has a map
of the entire FSM, can send to the user the sequence of inputs that are necessary to traverse the
dummy states to the original FSM. This creates a unique-per-chip unlocking protocol that allows
the owner to keep track of each fabricated IC without disclosing the entire FSM (the master key)
to the end-user.

Another FSM-obfuscation approach was initiated by HARPOON [13]. HARPOON worked by
inserting an FSM with sequences of dummy states into a sequential or combinational circuit. This
FSM is then used to feed the key wires of a combinational locking scheme. The FSM would output
the correct key for the combinationally locked circuit only when it was traversed to the unlock
state. This way a combinational circuit was turned into a sequential circuit that needs a set of
secret input patterns before it can start operating correctly. Note that the FSM-based performance
locking discussed earlier [41] can also be considered as an FSM-based obfuscation scheme.

Compared to combinational obfuscation schemes, the above sequential schemes have received
little attention from an attack perspective. As a result, a well developed threat model for these
schemes was never discussed in detail. Recently a couple of research efforts were directed
at these schemes [28, 52] under an oracle-less threat model. Both attacks rely on FSM enumeration.
These attacks are succesful due to the fact that one of the core assumptions in FSM-obfuscation
is that the attacker cannot extract and enumerate the FSM or at least the part of the FSM that is
important. However, even though a b-bit FSM has 2% different state-vector values, not all of these
states are reachable from the start-up state. In fact most FSM-obfuscation schemes generate the
FSM by writing down the states in HDL and synthesizing it. This results in the fundamental con-
tention: If the FSM is small enough to fit into HDL in a state-explicit form and be synthesized, then
it must be small enough for an adversary that knows the state-registers to enumerate the states.
Once the attacker has the graph of the FSM, due to the fixed style of the construction of these
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FSMs it is typically possible to simply observe the unlocking path on the graph. [28] provides an
extensive analysis of various FSM-obfuscation schemes.

Authors in Reference [28], after breaking various FSM-obfuscation schemes, propose a new
method based on partial reconfiguration on an FPGA so that the circuit is loaded little by little
as to avoid FSM enumeration attacks. However, it is not clear why an FPGA is used, since the
goal of locking/camouflaging in the first place was that the defender does not want to pay the
overhead price for using an FPGA. Otherwise an FPGA is a highly secure obfuscated circuit itself.
An FPGA is a fully programmable circuit and hence the strongest form of logic locking possible.
This is another pitfall in logic obfuscation research that we discuss shortly.

To summarize, unfortunately the proposed sequential obfuscation schemes so far do not seem
to even withstand oracle-less attacks. It is expected that moving on to oracle-guided attacks will
further weaken them. Despite this it is obvious that the richer semantics of sequential logic allow
for much more complex obfuscated circuits and the development of IP protection protocols. This
will in turn call for more sophisticated deobfuscation attacks as well.

4.3.8 Analog and Mixed-Signal Obfuscation. Analog circuits have received a lot less attention
when it comes to obfuscation. Even though analog circuits are a smaller share of the overall elec-
tronics market, the IP value inherent to an analog design can surpass many digital blocks for which
open-source RTL is becoming more and more available. Plus, modern analog designs are the result
of thousands of person-hours of analysis and simulation. That said, unlike digital Boolean logic
where the functionality of a circuit can be easily resynthesized into a different technology node,
analog design is heavily tied to the particular technology node and it is difficult if not impossible
to simply pirate a design from one technology node to a different one or even a different fab at the
same node. This is due to the fact that properties important to analog design such as resistance,
capacitance, and transistor trans-conductance vary vastly from node to node and fab to fab [4, 57].

Not surprisingly, the few works that have targeted protection of analog designs have focused on
creating digitally programmable resistor/capacitors/current-sources and using them in the design
[35, 63, 94]. This way a digital key will configure an analog property in the circuit. The benefit of
these schemes is that not only do they provide security they can also improve reconfigurability to
tune analog circuits post-fabrication to suppress process variation and improve reliability. Oracle-
guided or oracle-less attacks in general on a locked analog circuit are possible by modelling the
circuit as a real function rather than a Boolean one for which regression, machine-learning, non-
linear optimization, and SMT-solving can be used to find key values that satisfy different criteria
such as stability/gain for oracle-less attacks, and agreement-with-oracle for oracle-guided attacks.

One limitation with existing analog locking schemes is their focus on parameter hiding, which
as discussed earlier is achieved automatically to some degree due to process variation and fab
dependency especially for end-user attackers. It will be great moving forward to have schemes
that can hide the high-level topology and architecture of analog circuit blocks as well at the cost
of perhaps more overhead for the additional protection.

5 SUMMARY, PITFALLS, AND FUTURE DIRECTIONS

Figure 24 presents a map of the current state of obfuscation research with significant attack and
defense ideas marked with blue and red squares, respectively. The attacks are marked with their
attack model (OG, OL, and SOG). As can be seen from this map, locking/camouflaging schemes
began with random insertion of key-structures (XOR/MUX/LUT) into the circuit. These schemes
were broken with various generations of SAT attacks but only in the oracle-guided attack model. In
the oracle-less model, attacks have been mildly successful in defeating some forms of XOR/XNOR
insertion. Point-function schemes have succeeded in thwarting exact attacks. However, in the
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Fig. 24. Overview of the evolution of hardware obfuscation with oldest work at the top and newest work
at the bottom. The red boxes denote attacks and blue boxes denote defenses. The OG (oracle-guided), SOG
(sequential oracle-guided), and OL (oracle-less) tags describe the attack’s threat model. The C (camouflaging)
and L (locking) tags describe the category of defenses.

approximate attack model, there seems to be no straightforward approach for securing most cir-
cuits. Densely cyclic circuits may provide some hope for this path, since at this point nested cycles
are difficult to attack with CycSAT attacks. Flood camouflaging in which ubiquitous ambiguity is
created in the circuit with added interconnects and dummy wires stand undefeated, possibly set-
tling the camouflaging problem. FSM-obfuscation schemes despite their attractiveness as a future
direction are largely broken even in the weak oracle-less attack model.

We now list some important concise lessons and pitfalls that may prove useful to researchers
and designers regarding the state of the art of locking and camouflaging:

o The importance of the threat model: at this point in obfuscation research we know the im-
portance of the threat model. To put this in context, while we currently have working so-
lutions with low overhead against oracle-less attacks and exact oracle-guided attacks, we
are struggling to implement approximation resiliency with reasonable overhead and we
know protection in the t-probed-oracle model is likely impossible. Hence it is important
that designers decide their threat model before adopting an obfuscation scheme, which will
determine what can be expected from the scheme in terms of security per overhead.

An FPGA/PLA fabric is the most secure form of locking and camouflaging: The layout of a fully
programmable fabric such as an FPGA/PLA provides little information about the circuit that
is programmed into it. Unlike ASICs, with an FPGA the entire functionality of the circuit
is encoded into electrical signals rather than physical features. However, an FPGA imple-
mentation of a design incurs significant overhead to the design, which is the motivation
for locking/camouflaging ASICs. This also means that the frame of reference for overhead
analysis is an FPGA implementation. If a locking/camouflaging scheme on a particular ASIC
design results in overhead that is larger than implementing that design on an FPGA, then
the scheme is not a viable low-overhead solution.

Active probing will render oracle-guided defenses useless: If the attacker can probe internal
wires of an oracle circuit with photon-emission, laser-probing, or active probing [47, 48],
then securing locking and camouflaging becomes impossible. This means that for designers
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that are adopting an oracle-guided attack model, defending against probing attacks should
precede obfuscation. Preventing probing attacks itself is a hot area of research that may
result in cheap and prevalent physical solutions in coming years.

e Scan-chain security: Preventing access to internal state-elements that do not need to be
accessed outside of IC testing can improve the resiliency of locking/camouflaging against
oracle-guided attacks by forcing the attacker to resolve to the more computationally com-
plex sequential oracle-guided attacks. Considering the low cost incurred to the design for se-
curing scan-chains this should be practiced in both locking and camouflaging. The strongest
scan-chain protection scheme is simply deactivating the chain (zeroing the scan output) un-
less a “scan-unlock” key is received from the user, which can be checked with a comparator
and a tamper-resistant secret string. Any attempt to obfuscate the scan output by mixing it
with the scan-unlock key will leak key information unnecessarily.

e [C camouflaging versus logic locking: In IC camouflaging, since a programming circuitry
does not need to be routed to all the ambiguous elements, the empty areas in a layout can
be filled with dummy contacts, wires, and gates. This ubiquitous ambiguity that can be
created in the case camouflaging significantly complicates even oracle-guided attacks on
such dummy-filled layouts. Designers may use such camouflaging techniques to prevent
end-user reverse engineering with high confidence, since research attacks at this point have
not yet demonstrated successful reverse engineering of such schemes. These schemes also
typically incur little overhead to the design. It is possible that such schemes can settle the
camouflaging problem barring probing attacks.

e Oracle-less locking: Knowing how much more difficult it is to prevent oracle-guided attacks
it may be a viable pathway for designers to ensure that adversaries do not get access to an
oracle circuit. While for IC camouflaging this is almost impossible, for the case of locking
this may be implemented. If designs are fabricated in batches where each batch is obfuscated
with a different random seed, then designers can improve the probability of avoiding oracle-
guided attacks.

e Logic obfuscation and hardware Trojans: Whether logic locking can prevent the insertion
of hardware Trojans is heavily dependent on the particular design. Most hardware Trojans
only need to attach to the ports of critical modules to complete an attack. Hence, if a module
is locked yet the attacker is able to locate its ports, a Trojan insertion can be successful.
Reference [46] shows a case study of locking and hardware Trojan resiliency on a RISC-V
processor.

e Functional secrecy versus chip inoperability: Ensuring that a fabricated IC cannot be activated
is an inherently different task than ensuring that a reverse engineering attacker cannot
learn the functionality of the circuit. The goal of locking and camouflaging is the second
task, which, if implemented securely, will achieve the first task automatically. An immediate
result of this proposition is that in locking schemes any operation that operates strictly on
the key without combining with the input (i.e., wires that only depend on key inputs and
not primary inputs) does not contribute to functional secrecy and can be removed from the
circuit by an attacker. Locking/camouflaging is about intimately mixing ambiguity with a
circuit’s functionality and structure in a non-removable way.

e Functional secrecy versus indistinguishability obfuscation: Indistinguishability Obfuscation
or iO is a hot research topic in theoretical cryptography [29]. iO is an operator that can
convert a circuit ¢; to a circuit iO(c;) where iO(c;) is statistically indistinguishable from
iO(c;) where c; is any circuit that implements the same functionality as ¢;. In other words,
what iO does is destroy the “uniqueness” of ¢; so that it resembles any other circuit that
implements the same functionality. For instance the Binary-Decision-Diagram (BDD) of
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any circuit is a perfect indistinguishability obfuscation of that circuit, since a BDD repre-
sentation is canonical, meaning that it is the same for all circuits that implement the same
function. iO is fundamentally different than locking, since in iO the functionality is revealed
to the attacker, it is just that the unique way that the design implements that functionality
is what is hidden by iO. Locking requires the extra step of obscuring the functionality given
a set of secret key variables and given the ability to hide from the attacker internal wires,
which is not available to iO [41, 115]. While for small combinational circuits iO will not
satisfy the goals of locking, for larger sequential/algorithmic hardware, iO and structural
transformations may be used to hide the unique implementation of a circuit/program [41,
72].

Some open challenges in the area are as follows:

Physical Aspects: Active reading of electrical signals on a chip is a serious threat against
all sorts of hardware security measures including but not limited to obfuscation. Tamper-
resistant nano-devices and architectures tie with this problem of physical security plus the
huge effect they have on the security-per-overhead of locking/camouflaging.
Approximation-resiliency: We do not yet have a clear idea on how to reason about approxi-
mation resiliency for combinational circuits. Most small combinational circuits seem to not
withstand approximate attacks regardless of the traditional scheme that is used with low
overhead. It may be that achieving such a property for smaller circuits is simply impossible
but a formal/mathematical demonstration of this is an open challenge.

Cyclic attacks: While we have various cyclic obfuscation scheme in the area of cyclic attacks,
it seems that the CycSAT attacks may have limitations. Designing faster CycSAT attacks will
help understand if the resiliency of cyclically obfuscated circuits is a genuine computational
hardness or is due to simply not having the right algorithms in place at this time.

Formal proofs of security: Modern theoretical cryptography relies heavily on formalism for
reasoning about security. Security properties are clearly defined in mathematical terms and
reduced to the hardness of other problems. Successfully applying this to logic obfuscation
is an open challenge. Note that many faster cryptographic primitives such as block-ciphers
rely on heuristic security, yet there is a rich mathematical framework for reasoning about
such primitives that is simply not present in locking/camouflaging even though the two
domains are quite related.

Sequential obfuscation/deobfuscation: while the majority of current research targets combi-
national circuits, a move to reasoning about obfuscated sequential circuits is much needed.
Better modelling of threats and goals of obfuscation in dealing with sequential designs will
help avoid some of the mistakes of past schemes. Sequential obfuscation/deobfuscation will
directly translate to reasoning about obfuscation at higher levels of the design such as RTL
level and SoC level or even the software-hardware interface.

New notions of security: In this article, we focused on functional secrecy as the security
property. However, defining novel notions of security that call for different approaches are
an attractive research goal. iO and parametric obfuscation are examples of properties that
are different than functional secrecy yet may be made useful in specific scenarios.

6 CONCLUSION

The globalization of the IC supply chain propels the growth of the semiconductor industry and
makes it the backbone of the modern-day computing system. However, it comes at the cost of
hardware IP privacy risks due to reverse engineering. Consequently, the research on hardware IP
protection through logic obfuscation has grown over the past decade and received considerable
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attention. This article provides a detailed survey of the recent progress in this area. The article
first laid down a foundation for reasoning about security of these schemes by exploring various
threat models. It then surveyed the state of the art in deobfuscation attacks within each attack
model including the testing-based attack, the SAT attack and several of its variants and oracle-less
attacks. The article then surveyed state of the art in defenses by dissecting locking/camouflaging
into different layers of abstraction including the cell level, and then netlist level. We discussed rep-
resentative netlist-level schemes and then surveyed representative attacks. Despite the existing
research, logic obfuscation remains an important area with new challenges to be resolved, includ-
ing novel attack models, understanding higher-level notions of obfuscation, and formal proofs of
security. These challenges will certainly attract more research into this domain in the future.
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