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Abstract—Hardware vulnerabilities are often due to design
mistakes because the designer does not sufficiently consider
potential security vulnerabilities at the design stage. As a result,
various security solutions have been developed to protect ICs,
among which the language-based hardware security verification
serves as a promising solution. The verification process will be
performed while compiling the HDL of the design. However,
similar to other formal verification methods, the language-
based approach also suffers from scalability issue. Furthermore,
existing solutions either lead to hardware overhead or are not
designed for vulnerable or malicious logic detection. To alleviate
these challenges, we propose a new language based framework,
QIF-Verilog, to evaluate the trustworthiness of a hardware system
at register transfer level (RTL). This framework introduces a
quantified information flow (QIF) model and extends Verilog type
systems to provide more expressiveness in presenting security
rules; QIF is capable of checking the security rules given by
the hardware designer. Secrets are labeled by the new type
and then parsed to data flow, to which a QIF model will be
applied. To demonstrate our approach, we design a compiler for
QIF-Verilog and perform vulnerability analysis on benchmarks
from Trust-Hub and OpenCore. We show that Trojans or design
faults that leak information from circuit outputs can be detected
automatically, and that our method evaluates the security of the
design correctly.

I. INTRODUCTION

The changing landscape of the semiconductor industry has

increased the demand for intellectual property (IP) cores.

Various factors, such as shortened time to market (TTM) and

lowered design cost, have led to the proliferation of the IP

market. Meanwhile, the impact of malicious logic and design

flaws in IP cores threatens to ruin the credibility of third-

party vendors and places unnecessary security risks on the

IP customers and end users. Existence of a malicious IP

core in a system-on-chip (SoC) invalidates the applicability of

many of the previously proposed methods for hardware Trojan

detection [1], [2].

Most of the hardware vulnerabilities are the result of

designers not addressing security problems adequately [3].

With growing complexity of SoC designs, the workload is

overwhelming for SoC designers to manually diagnose secu-

rity vulnerabilities. In addition, mitigating vulnerabilities after

the design stage results in increased costs and delayed TTM.

Therefore, developing automated methods for detecting and

evaluating vulnerabilities in the design stage is highly desired.

Hardware vulnerabilities could result in information leak-

age. With sensitive secrets like user privacy, passwords, or

encryption keys routinely being stored and communicated in

our daily use of electronic devices, data secrecy protection

has become a key objective of computer security research

[4], [5]. Although cryptographic algorithms play an important

role in preventing key leakage, adversaries still exert all their

focus and effort to access sensitive information via weaknesses

appeared in the hardware implementation.

Information flow tracking (IFT) [6] is a powerful approach

for preventing sensitive information leakage. In this approach,

labels representing secrecy/trust levels are assigned to data and

operations on data are extended to include operations on their

labels, based on predefined information flow policies. Access

or propagation of data with sensitive labels is thereby restricted

to trusted segments of the code or system and is forced to abide

by the desired information flow policies. SecVerilog [7], [8],

Caisson [9] and Sapper [10] are some of the solutions based

on IFT. However, these solutions either require developers to

have sufficient knowledge to insert the labels precisely, or they

suffer from hardware overhead.

On the other hand, Quantitative Information-Flow (QIF)

models and analyses provide such a technique for characteriz-

ing the magnitude of information leaks [11]–[13]. Specifically,

for a classical QIF model, from observation of both program

behaviors, uncertainty is represented with probability distribu-

tions. The QIF metric is then calculated to quantify informa-

tion leakage depending on those distributions. Mardziel et al.

[13] put a dynamic QIF model and metric in a programming

language, but there is no attempt of applying QIF to hardware

with automatic and applicable tool.

In the proposed approach, we extend the type system of

Verilog to provide only one new type for labeling signals.

Developers can attach the new label to any signals (wires

or registers) in designing hardware. We name the new lan-

guage as QIF-Verilog which requires developers to only find

out “secret” without considering any IFT policies. The QIF

metrics named Remaining Uncertainty (RU) and Accumu-

lated Remaining Uncertainty (AR) for quantifying hardware

information leakage are proposed as a reference to terminate

taint/labels propagation. In the end, we check whether the

output/inout ports are tainted by the sensitive label. Also,

developers can obtain a metric AR with the most vulnerable

propagation path which represents the barrier of accessing

labeled sensitive information by adversaries.

The main contributions of this paper are as follows:
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• We propose a new hardware description language named

QIF-Verilog, extended from Verilog, that tracks infor-

mation flow of the specific type signals through using

taint propagation. By using the QIF-Verilog, developers

with no background on security can intuitively label

the sensitive signal and quickly evaluate the design’s

trustworthiness.

• A QIF model is designed to apply information-theoretic

metric for quantifying flow of sensitive secrets in hard-

ware design. The model includes metrics that can quantify

the sensitive downgrades of secrets in transition in the

data flow. To the best of our knowledge, we are the first

to design and apply QIF based model and metric for

hardware-level information leakage prevention.

• We put the QIF model and metric into use through

implementing them in the proposed new language. Then

we design and evaluate a series of secure benchmarks to

show that information leakage vulnerabilities can be de-

tected in design stage. Further, our approach can provide

security assessment to large systems, thereby addressing

the scalability challenge.

The rest of the paper is organized as follows: In Section

II, we discuss previous work on malicious logic detection

using QIF-Verilog based solutions and present QIF model

and metric, then discuss how our work differs from them.

In Section III, we introduce the threat model and provide

some relevant background on type system for IFT, and QIF

for information leakage. We explain our extended language,

assessment model, and RU metric in Section IV. The threshold

setup and tool development are also introduced in this section.

In Section V, the derivations of RU equations for several

representative operations are discussed in detail with examples.

Section VI presents demonstrations of our approach. Finally,

conclusions and future works are drawn in Section VII.

II. RELATED WORK

A. Language-based Information Flow Security in Hardware
Protecting the confidentiality of sensitive information is

one of the fundamental security objectives of IFT methods.

Traditional IFT enforces the noninterference policy, which

states that low outputs are independent of high inputs; this

implies that an adversary can deduce nothing about the high

inputs from the low outputs. There are many existing works

that can check the noninterference property by using type

systems and Sabelfeld et al. [14] wrote a survey about these

works.
Recently, two languages for hardware security have been

developed, Caisson [9] and Sapper [10], which synthesize

secure circuits that satisfy IFT isolation and separation prop-

erties. In both these languages, the designer needs to set up

security labels for all signals, specifically wires and registers.

All hardware items, like registers, relevant to information flow

are duplicated in a program written by Caisson. Although

improvement of Caisson is made by applying dynamic type

system in Sapper, hardware overhead will still be caused at

the circuit level.

SecVerilog extends type system of standard Verilog [8] and

avoids the hardware overhead by performing verification in

the compilation stage. To enforce noninterference, [8] designs

a predication mechanism in SecVerilog, which implies that an

attacker cannot infer information about the secrets. However,

because lots of useful information depends on high sensitive

secrets, achieving noninterference is generally not possible.

For example, rejecting an incorrect password will exclude a

wrong guess of the correct password. Thus, to increase the

precision, SecVerilog leads to significant complexity of adding

security labels. Applying SecVerilog, developers have to tag

security labels very carefully to wires and registers in the

Verilog design. In other words, circuit designers must consider

many security rules to specify information flow policy while

adding labels. Therefore, SecVerilog is difficult for developers

that do not have an understanding of security features of

the design. From a developer’s perspective, a simplified (or

automatic) solution is a preferred alternative.

Instead of enforcing noninterference, the quantitative the-

ory of information flow aims at relaxing noninterference,

which quantifies how much information is being leaked [11].

Through tolerating a possibility of leaking information, the

quantitative information flow provides a reference to reduce

the complexity of realizing information flow policy signif-

icantly. In the QIF-Verilog, as information flow policy is

assembled in the proposed QIF model, only one new type

is defined and used to highlight the secret, which is explained

with an example in Listing 2. Comparison is also made with

SecVerilog, Listing 1. In fact, in addition to the highlighted

labels, there are other separate files further defining dependent

types.

Listing 1 SecVerilog [15]

module deptype(...);
input[15:0] {L} timer;
input[15:0] {H} data;
reg[1:0] {Par cur_state}

cur_state;
reg[1:0] {Par next_state}

next_state;
...

Listing 2 QIF-Verilog

module deptype(...);
input[15:0] timer;
Taint input[15:0] data;
reg[1:0] cur_state;

reg[1:0] next_state;

...

B. Quantified Information Flow

Based on information theory, the key idea of QIF is to

assess the quantity of the leaked sensitive information to

insecure channels through information flow [11]. In [12],

Kopf and Basin present a QIF model for adaptive attacks

on deterministic systems based on the assumption of uniform

prior distributions. Bounds of leaked information in the above

system are deduced in the approach. [13] uses Kopf and

Basin’s work to measure secret information leakage with

time change. Specifically, several metrics of uncertainty are

considered including vulnerability [11], g-vulnerability [16],

and Guessing-entropy [17]. Authors in these papers design a

QIF model and put it into a functional language. However, as

programmers rarely use functional programming to develop

large-scale circuits, the language in [13] is not applicable for
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Figure 1: Noninterference model

current practices. Furthermore, there is no attempt to apply

QIF in the hardware security area.

III. BACKGROUND

A. Attack Model

In this paper, we assume that the untrusted hardware leaks

information through the leakage path caused by design errors.

Specifically, lack of security knowledge of the hardware de-

signers could result in vulnerabilities such as leakage paths,

in the design stage. The adversaries can take advantage of

such vulnerabilities to leak information. We assume that the

adversary has knowledge of the functionality of the design

and have physical access to I/O ports of the manufactured

hardware. By providing inputs and observing outputs, the

adversary derives sensitive information such as encryption

keys from the hardware.

B. Noninterference and Information Flow Labels

Confidentiality of a system is presented as, while the inner

structure of the system is treated as a black box, an adversary

learns no more information from system executions than from

direct observations. We define a state of system as S, and then

the state S is divided into low part and high part - such as SH

and SL. The low part states SL is in public domain, which

can be observed by an adversary, while the high part states

SH is the one we do not want an adversary to learn. Here,

inner structure of the system is treated as a black box.

When the system is executing, initial states SH1 ∈ SH and

SL1 ∈ SL are its input. Consequently, the output states of

the system are S′
H1 ∈ SH and S′

L1 ∈ SL. When there is

a second execution of the system, the low part states input-

output, SL1 and S′
L1 remain the same, whereas the high part

states change value i.e., SH2 ∈ SH and S′
H2 ∈ SH are new

inputs and outputs of the system, respectively. A description

of this procedure is given in the Figure 1.

In the above system, since adversaries cannot learn the

difference between {SH1, S
′
H1} and {SH2, S

′
H2}, we define

the indistinguishable relation under observation of SL states

as ∼L. Further, let [[s]] be behaviors starting from states S, like

execution starting from S. Then, the Noninterference given by

[11] can be represented as follows,

S1 ∼L S2 ⇒ [[S1]] ≈L [[S2]] (1)

where, ≈L defines similar indistinguishable relations in be-

haviors. Equation (1) means that starting from two states S1

and S2, if the initial states are indistinguishable, then their

behaviors will also be indistinguishable. Actually, different

confidentiality properties can be captured by properly choosing

between ∼L, [[•]], and ≈L. For language-based IFT solutions,

[[•]] stands for semantics of design or program, while the two

relations ∼L and ≈L imply what an attacker can observe.
All previous language-based IFT methods set up sensitive

levels from a partially ordered set and determine the security

policy. A commonly followed practice is to design two levels

H (high sensitive, Private) and L (low sensitive, Public), then

restrict H labeled signals flowing to L labeled signals, while

the reverse is allowed. In the proposed QIF-Verilog, we relax

the noninterference by quantifying the threats of information

leakage inner the system.

C. QIF Model and Metrics

Although maintaining noninterference is important for pro-

tecting confidentiality of a system, it is not practical in

hardware design because SL strongly depends on SH in many

scenarios. For instance, in all the encryption hardware, both

plaintext and ciphertext belong to SL, however, ciphertexts are

obtained from interoperation among plaintext and key which

belongs to SH . Therefore, there are a variety of approaches

to relax noninterference [18] and QIF provides a quantitative

solution of accounting how much information is leaked.
In [11], a practical QIF model is summarized where the

system produces SL as output while receiving SH as input.

Attackers attempt to infer information from SH by observing

signal SL. Under these assumptions, the amount of informa-

tion leaked to the attacker can be expressed as,

Definition 1. Information Leaked = Initial Uncertainty -
Remaining Uncertainty

From an attacker’s perspective, information leakage is the

change of uncertainty during observation. Generally, uncer-

tainty is deduced using probability distributions, specifically,

normal distribution in our approach. Then, QIF metrics are

calculated in the form of a particular number, which stands

for information leakage.
Accordingly, vulnerability V (SH) is defined as worst-case

probability that attacker could deduce the value of SH cor-

rectly in one try [11]. Other assumptions are that system is

deterministic and SH is uniformly distributed, and we define

|S| as the number of possible states in S. Then the min-entropy

of SH , H∞(SH), is defined as,

H∞(SH) = log
1

V (SH)
= log|SH | (2)

where, log is of base 2. If S implies states of a register,

value of log|S| is the length of the register. Correspondingly,

conditional min-entropy H∞(SH |SL) is defined as,

H∞(SH |SL) = log
1

V (SH |SL)
= log

|SH |
|SL|

(3)

Thus, we quantify various uncertainties and information leak-

age as follows:

Initial Uncertainty = H∞(SH)
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Figure 2: Working procedure of the proposed approach.

Remaining Uncertainty = H∞(SH |SL)

Information Leaked = H∞(SH)−H∞(SH |SL)

Finally, information leaked is log|SL|.

IV. METHODOLOGY

The proposed QIF-Verilog denotes sensitive information for

behavioral Verilog and then statically checks information flow

in a quantitative way. By adding a single type, our method

can enable an information flow policy on secret propagation

to relax noninterference in the design. Metrics are designed

to quantify sensitive downgrading along the propagation from

secrets to output ports. The entire design, including secrets

with the secure label, are parsed in data flow and then the

QIF model is applied to perform analysis by comparing the

metrics with a threshold. Accordingly, we develop a compiler

to realize the proposed QIF-Verilog.

A. A Highly-Secure Hardware Description Language

Extending Verilog types, we design a highly-secure HDL

language by adding a new type, Taint. Compared to prior

secure languages, the security lattice that maps to security

levels only contains one single element. Hence, as shown

in Equation (4), the syntax of security label in this paper is

merged with Verilog signal types such as wire and reg.

sigtype : INPUT |OUTPUT |REG|WIRE| . . . |Taint (4)

where sigtype stands for a set of all signal types.

The working procedure of our proposed approach is shown

in Figure 2, where a developer designs circuit using the QIF-

Verilog and assigns secrets with type Taint. Then, statically

the designs with new notations are parsed to data flow graphic

(DFG), which is processed by the QIF model. Applying the

QIF model, the labels are propagated from tainted nodes,

defined as transition source, to the untainted nodes, defined

as transition destination, along with data flow. A pair of

transition source and destination, together with corresponding

threshold comparing, formed a transition in our QIF model.

An example of a transition and the metrics are shown in the

Figure 3. In IFT systems, information flow policies are defined

to configure the taint source, taint target and tracking rules

for taint propagation. These definitions of the QIF model are

presented in the following sections. Specific tracking rules are

designed to address the leakage vulnerabilities of the RTL

design.

Figure 3: Taint propagation from the taint sources to the taint targets.

1) Taint Source: The signals declared in Taint type are

treated as storing sensitive information. As the entire design

is represented with the help of a DFG, all the signals are

mapped to the nodes of the DFG. The nodes converted from

Taint type signals are defined as the taint sources.

2) Taint Targets: The signals with types Out and In −
Out in the top module of a design are defined as the taint

targets. The sensitivity of a signal will be downgraded during

the propagation until it becomes insensitive. In the end, all the

output ports (including in-out ports) will be checked to find out

if they are sensitive. If so, an alarm will be triggered and the

vulnerable propagation path will be displayed. Otherwise, the

design will be treated as satisfying the confidentiality property.

Then, Verilog code is generated by removing the extended

types, Taint.
3) Taint Propagation: As mentioned in the introduction

section, the taint propagation is composed by a series of

transitions as shown in Figure 3. Specifically, the sensitive

label Taint is propagated from transition source to transition

destination. During the operation between transition source

and destination, a metric RU is calculated to quantify the

sensitive downgrading in secrets propagation1. Then an Ac-

cumulated RU (AR), ARL in Figure 3, on each transition

destination is obtained from adding RU to AR, ARR, on

corresponding transition source. The AR on each taint source

node is set to zero. The sensitivity in the propagation is

downgraded with the increasing of an AR. If an AR reaches a

threshold, the corresponding propagation is terminated, which

means that the Taint label will not be added on the transition

destination node. The threshold is computed based on the

length of secrets; a detailed explanation is given in the Sub-

section IV-C.

The typing rules for propagation of security label Taint
are shown in Equations (6) and (7). Explicitly, there are two

propagation rules: 1) via assignment, either blocking or non-

blocking, as presented in Equation (6), and 2) via implicit

statement as presented in Equation (7). In both rules, most of

the notations are similar to those of [19].

1We assume there are very high sensitive levels for secrets. The sensitive
levels will be propagated to other signals connected to secrets and changed
during propagation.
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Operator (op) T op U T op T

ASSIGN/NOT 0

LSHIFT/RSHIFT 0

DECONCATENATE W −W ′

CONCATENATE 0 0

AND/NAND W
2 W

OR W
2 W

XOR/XNOR W
2 W

PLUS/MINUS W
2 − 1 W − 1

MOD/DIVIDE W (W2 − 1) W (W − 1)

TIMES W
2 + (W − 1)2 W + (W − 1)2

POWER W + (W − 1)2 W + (W − 1)2

LT/GT W − 1 2W − 1
LE/GE W − 1 2W − 1
EQ/NE W − 1 2W − 1
COND W − 1 2W − 1

Table I: RU of a single step transition in data flow.

For instance, in Equations (6) and (7), sig means signal in

the system while Γ is the context of types and FS(Γ, Taint)
returns all the signals that have been labeled Taint in Γ.

Symbol exp(sig) stands for single-step execution expression

which includes sig. Function AR(sig) returns a QIF metric

in the signal sig, which is then compared to a threshold

Th. We show the details of AR in the following subsection.

pc is defined as program-counter to trace control flows and

M monitors all signals’ changes by alternative executions.

Analysis function DA(η) returns variables that have to be

assigned by any execution at location η.

B. Vulnerability Quantifying Model and Metrics

As tainted sources, secrets have a very high sensitivity level

in a design. Intuitively, in the information flow tracking, once

a secret is involved in an operation, there is a possibility

of leaking information. On the other hand, from adversaries’

perspective, compared to getting access to the secret directly,

barrier for guessing the secret will be increased with more

transitions between secret and the observation point. In other

words, during information propagation, the sensitivity of secret

should tend to be downgraded to null (no sensitivity). In

the following section, we show the details of building the

quantifying model and designing the metric that can evaluate

the vulnerability of secret propagation through information

flow tracking.

From rules of label propagation in Equations (6) and

(7), the function AR dominates whether the security label

Taint will be propagated from transition source signal sigR
to transition destination signal sigL. In our approach, AR
receives the transition destination node in data flow and returns

an Accumulated Remaining Uncertainty value on this node

as mentioned above. Specifically, as a single-step execution

in QIF-Verilog maps to a transition in data flow, an RU,

shown on Figure 3, should be calculated for every transition

in propagation accordingly.

For every kind of operator in QIF-Verilog, we define the

corresponding RU equation to compute RU. We make two

assumptions to realize the QIF model and RU equation,

Assumption 1. Binary values in all of the signals in the
hardware system, including wires, registers, and memories are
uniformly distributed.

Assumption 2. If two signals from the same source are
separated far apart, we do not take their dependency into
consideration in calculating entropy.

For Assumption 1, considering that many encoding methods,

like spread spectrum encoding, are used to let 1 and 0 equally

appear in bottom circuit, it is reasonable to assume all the

signals get high or low voltages in the same probability.

The distribution is used when we evaluate the remaining

uncertainty of each operation in the Verilog program. Thus,

changing from uniform to other distributions will only require

changes in Table I. We will improve the applicability of the

QIF-Verilog by applying more appropriate types of distribu-

tions to different hardware components in future.

In Assumption 2, the rational is that the application of

original QIF is narrowed to a single-step execution. In the

following section, we set a rule to make a selection when two

secrets propagation paths merge. The rule can help cancel the

correlations in reconvergent fanout. Hence, even if two wires

coming from the same node have a dependency, each wire

will contribute RU to its own propagation, accordingly. We

will discuss more details about the merge of propagation in

Section V.

A specific RU is calculated on each single step transition

based on the real hardware program. Then the RU is treated

as an attribute value of the destination node.

sigL ⇐ exp(sigR) (5)

As in Equation (5), corresponding RU generated in exp(sigR)

will be put into sigL, which is defined as a destination

signal in the assignment. Also, we let RU(sigL) return the

generated RU. Then, for each node in the information flow,

an accumulated RU is computed by considering all previous

relevant steps as shown in Equation (6).

AR(sigL) = RU(sigL) + AR(sigR) (6)

From Equation (3), by giving sigR1 and sigR2 as inputs,

and then producing sigL, RU generated from exp(sigL) is

log |sigR1|+|sigR2|
|sigL| , explicitly |sigR1|+ |sigR2| − |sigL| which

is actually an equation about signal lengths. In the proposed

method, we deduce the corresponding RU equation for each

kind of operator and show the results in Table I. In the source

code level, operators are involved in the transition, which are

shown in the first column of the table. For the rest of the

columns, RU equations are given by considering signal’s label

and length. Meanwhile, in the first row of the table, T stands

for signals labelled by Tainted while U stands for the rest

untainted signals. op means operator applied, accordingly. We

also assume that W is the length of signal involved in the

transition.
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Γ � sigR : Taint, sigL 	∈ FS(Γ, Taint) |= P (•η),AR(sigL) < Th ⇒
Γ,pc,M�sigL=ηexp(sigR)

Γ,pc,M�sigL⇐ηexp(sigR)

Γ, pc,M � Taint
⊔
pc = Taint

T-PropagationA (6)

Γ � exp(sigR) : Taint,AR(sigL) < Th ⇒ Γ, pc,M � ifη(exp(sigR))c1 else c2
Γ, Taint

⊔
pc,M ∩ DA(η) � c1 Γ, Taint

⊔
pc,M ∩ DA(η) � c2

T-PropagationIF (7)

As an example, in Figure 3 the transition destination k0b,
which maps to sigL above, is assigned by an exclusive OR

operation between the transition sources k0a, which maps to

sigR1, and k4a, which maps to sigR2. We assume that k0a
includes the Taint label, while k4a does not. Then in this

transition, ARR, which maps to AR(sigR), is obtained from

node k0a. In the exclusive OR operation, RU is produced

depending on the row beginning with XOR and column T
op U in Table I, which equals to half the value of the length

of the signal k0a. And then we can calculate the Accumulate

RU ARL, which maps to AR(sigL) above, on node k0b by

adding RU and ARL.

On the other hand, from the Equation (6), the accumulated

RU in the transition destination is obtained by adding the

computed RU in the transition destination to accumulate RU

in transition source. When two secret propagations merge

together (tainted signal operates with tainted signal), we define

the following rule to make a selection between two RUs in

transition sources - when both transition sources are tainted

signals, considering that the propagation path containing less

accumulated RU is more suspicious in leaking information,

the tainted transition source signal carrying less accumulated

RU will be preserved while the one carrying more AR will be

discarded. The rules further result in the strategy of preventing

the cyclic paths during the propagation. As the AR in parents

nodes are less or equal to their children nodes in the DFG, we

set the strategy as: canceling all the cycles between the nodes

and their parents.

C. Threshold of Terminating Propagation

The threshold is automatically computed by considering

the average length of initially labeled secrets. There are two

concerns in computing the threshold - a lower bound must

be higher than the accumulated RU in vulnerable propagation,

while an upper bound must be lower than the accumulated

RU in normal propagation. Heuristically, more gates involved

in propagation will increase the barrier of guessing secret by

attackers. From Table I, all the logic gates bring in linear

RU increasing. Thus, we design the threshold as a linear

relationship with an average length of secrets. To estimate

the value of the parameter in the linear relationship, we hope

there is a full diffusion, which means a significant sensitivity

downgrade, between the secrets and observation points in

any arbitrary design. We assume that for per unit length

secret, to get the full diffusion, the AR value from different

benchmarks are approximately equal. Therefore, the parameter

can be deduced from a specific use-case, like following AES.

Depending on [20], a full diffusion is obtained through 2

rounds inner AES. For each inner round of 128 bits AES,

we compute the accumulated RU from input key to output

key as 159 based on Table I. Then the parameter in the linear

relation is 2× 159
128 , which is 2.49. This means that in the case

of the full diffusion, it is 2.49 Accumulated RU is required

for one bit secret. Hence the threshold is:

Th = 2.49× avg(sig : Taint) (7)

where avg returns the average value of the secrets’ length.

Note that the 2.49 computed here is a generally used parameter

for arbitrary benchmarks.

D. Automatic Tool Development

Subsequently, a compiler written in Python is developed,

which receives the QIF-Verilog program as input and on which

IFT analysis is performed. Note that in implementation, the

function of parsing QIF-Verilog codes as a data flow graph

is developed by enhancing PyVerilog [21]. Each signal in the

RTL design maps to a node in the DFG. The proposed metrics,

such as RU and AR, are designed as parameters of the node.

Connections among signals are identified as edges among

nodes. An automatic taint tracking mechanism is developed

to realize the information flow policy.

Specifically, in the QIF model, the metrics are used to

analyze the data flow. All the AR in taint sources are set to be 0
at the beginning. From the tainted nodes, the tool searches the

transition destinations and then propagates the taint label. The

RU is calculated along with the taint propagation. Accordingly,

accumulated remaining uncertainty (AR) is computed from RU

in each transition depending on (6). Then a taint propagation

would be determined once the AR on this propagation is larger

than the threshold. If the tainted label is detected in any output

ports, an alarm will be raised indicating the violation of the

confidentiality property.

V. REMAINING UNCERTAINTY DERIVATIONS

As mentioned earlier, a metric RU in each transition is

computed based on the equations provided in Table I. In

the following section, we show the derivation details of the

Remaining Uncertainty through several examples and discuss

the propagation merges in details.

A. Operations - Single Input

We define the single input operation as there is only one

node in transition source involved in the operation. The

QIF model for single input operators, like ASSIGN, NOT,

SHIFT, is given in Figure 4(a). As observed from transition

destination, information from the transition source is leaked for

ASSIGN. Thus, there is no uncertainty for adversaries and the

RU produced from the ASSIGN operation should be 0. For
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Figure 4: Remaining uncertainty in a transition

the operators SHIFT and NOT, although there are changes

between output and input data, entropy in SHIFT and NOT

operation is the same as ASSIGN.

An example is the implementation of a simple substitution

cipher. Although the characters in plaintext are substituted,

attackers can easily recover the contents by counting the fre-

quency of symbols used in ciphertext. Therefore, RU generated

during ASSIGN, SHIFT, and NOT are all 0, which is in

accordance with Equation (3). The length of input or output

is defined as W , hence, RU = |sigR|− |sigL| = W −W = 0.

The Verilog concatenate operator is the open and close

brackets, which is used to split or integrate signals. To

distinguish those two behaviors, when the close brackets

are in transition destination, we call it DECONCATENATE,

otherwise we call it CONCATENATE. The DECONCATE-

NATE operation is modeled in Figure 4(c). Assume that the

length of the node in transition source is W , and the length

of a specific node in transition destination is W ′. In the

calculation of AR on specific node, the RU produced from

this DECONCATENATE operation is W −W ′.

B. Operations - AND, OR

In the following paragraphs, we discuss the operations

whose transition source contains more than one nodes as

shown in Figure 4(b). To avoid ambiguity, optimization is

performed before the transition source nodes are involved in

the operations. Constants and untainted signals in an expres-

sion will be calculated and combined first. After that, there

are two situations of transition source nodes regarding the

security label - a tainted node operates with an untainted node,

a tainted node operates with a tainted node. Accordingly, the

RU equation should be defined for both cases.

For the case of a tainted node operating with untainted node,

attackers observe from the transition destination and know the

operation. Therefore, uncertain bits in transition destination

nodes depend on the untainted node in the transition source.

The uncertainty is in fact the quantity of effective observation

of untainted node. Statistically, from assumption 1, expectation

of 0 in the untainted node into the AND operation is W
2 , where

W is the length of each input signal. This is the same as 1

in the untainted node to the OR operation. Namely, the secret

is hidden because of the 0 value in the untainted node into

AND operation, and the 1 value in the untainted node into OR

operator. Therefore, the RU equation is W
2 for the operations

AND/OR.

For the case of tainted node inter-operates with tainted

node, since both transition source nodes are secrets, then the

RU equation can be derived from Equation (3) directly, i.e.,

RU = 2 ∗ W − W = W . Furthermore, as in Equation (6),

the accumulated RU in transition destination is obtained by

adding an RU from operation to the accumulated RU from

transition source. Then there must be a selection between

two ARs from the transition source side. In this situation,

the two taint propagations merge on this transition. Because

the propagation containing less AR means more suspicious in

leaking information, we use the less AR in calculating AR on

the transition destination.

C. Operations - XOR

A complex operator can be presented as an equivalent

Boolean algebra of basic operators like AND, OR, INV.

Accordingly, in hardware, a complicated function cell is com-

posed by combining basic gates. As a result, the RU equation

of a complex operator is defined by the more basic operators.

For instance, XOR can be made up as in Equation (8).

a XOR b = (a AND b′) OR (a′ AND b) (8)

Note that we only use minimized equivalent Boolean algebra

in deducing RU equation. Then, the RU equation for either

(a AND b′) or (a′ AND b) can be obtained from the

RU equations of basic operations mentioned earlier. Only one

part of algebra in the right side of Equation (8) should be

considered because there is a close dependency between those

two parts. Namely, from the attacker’s side, knowing either

part, the other one can be inferred completely. Consequently,

the RU equation for XOR is W
2 for the tainted vs untainted

case, and W for the tainted vs tainted case. Also, the results

from derivation of equivalent Boolean expression is consistent

with the result from Equation (3).
For more complex operators such as ADD, TIMES, etc., the

RU equations are obtained by following a similar derivation

of RU equations for XOR. Because of the page limits, we

cannot show the derivation process of RU equations for all the

operators. In Table I, the RU equations for all the frequently

used operators in QIF-Verilog are provided.

VI. EXPERIMENTATION

A. Experiment Setup

In practical applications, the use of the proposed QIF-

Verilog is straightforward. As shown in Listing 3, a developer

only needs to tag the new type Taint on any signals which

may contain sensitive information. In our experiment, the

secret key in the top level module of the system is labeled.

Then the confidentiality will be checked for those labeled

secrets.
To demonstrate the effectiveness of the proposed method

supported by the QIF model, we test 11 AES benchmarks

International Symposium on Hardware Oriented Security and Trust (HOST) 97

Authorized licensed use limited to: University of Florida. Downloaded on August 27,2020 at 03:29:48 UTC from IEEE Xplore.  Restrictions apply. 



Benchmarks Threshold AR-C Time (s) AR-T Time (s) Detected Trojan Leakage Payload

AES-T100 318.72 1423 183.4 127.5 232.0 Y leaks secret key through a covert channel

AES-T200 318.72 1423 184.1 127.5 213.8 Y leaks secret key through a covert channel

AES-T400 318.72 1423 184.3 128 211.8 Y transmit the key through an RF signal

AES-T700 318.72 1423 183.4 127.5 210.9 Y leaks secret key through a covert channel

AES-T800 318.72 1423 184.5 127.5 213.7 Y leaks secret key through a covert channel

AES-T900 318.72 1423 181.3 127.5 211.2 Y leaks secret key through a covert channel

AES-T1000 318.72 1423 181.4 127.5 231.8 Y leaks secret key through a covert channel

AES-T1100 318.72 1423 183.2 127.5 209.7 Y leaks secret key through a covert channel

AES-T1200 318.72 1423 181.3 127.5 211.0 Y leaks secret key through a covert channel

AES-T1600 318.72 1423 183.4 128 210.4 Y transmit the key through an RF signal

AES-T1700 318.72 1423 185.5 128 209.5 Y transmit the key through an RF signal

Table II: Tests on AES Trojan insertion benchmarks.

Benchmarks Tainted Signal Threshold AR-C Time (s) AR-T Time (s) Detected Leakage Path

DES secret key 139.44 259 1043.5 55.5 1066.8 Y a covert channel

3DES
one of the secret

keys
139.44 259 1048.3 55.5 1071.8 Y a covert channel

MD5 input data chunk 1247.88 2961 18.5 511.5 22.1 Y a covert channel

SHA-1 160 input data chunk 79.68 143 32.6 48 36.0 Y an RF signal

SHA-2 256 input data chunk 79.68 254 82.0 48 86.2 Y an RF signal

SHA-2 384 input data chunk 79.68 446 329.4 48 341.8 Y an RF signal

SHA-2 512 input data chunk 79.68 674 335.6 48 343.4 Y an RF signal

Table III: Tests on leakage path insertion benchmarks.

Benchmarks F-T (s) IFT-T (s) F-T/Total

AES-T1600 (C) 9.2 174.2 5.3%

AES-T1600 (T) 10.6 199.7 5.0%

DES (C) 1039.7 3.8 99.6%

DES (T) 1062.2 4.6 99.6%

3DES (C) 1041.6 6.8 99.4%

3DES (T) 1064.3 7.5 99.3%

MD5 (C) 8.6 9.9 46.5%

MD5 (T) 9.5 12.7 42.8%

SHA-1 160 (C) 30.9 1.7 94.8%

SHA-1 160 (T) 33.7 2.2 93.9%

SHA-2 256 (C) 80.1 1.9 97.7%

SHA-2 256 (T) 83.8 2.5 97.1%

SHA-2 384 (C) 326.0 3.4 99.0%

SHA-2 384 (T) 337.2 4.6 98.7%

SHA-2 512 (C) 332.2 3.5 99.0%

SHA-2 512 (T) 338.8 4.6 98.7%

Table IV: Time consumption in formalization and IFT analysis.

from TrustHub [22]–[24] which are fit to the attack model

in this paper. Those AES benchmarks are written in Verilog,

and contain malicious logic which leaks the secret key from a

cryptographic chip running the AES algorithm through differ-

ent ways. Thus, there are various hardware Trojan types in the

benchmarks, serving as good testbed to evaluate the proposed

framework in detecting different types of information leakage

channels. Note that our approach prevents design mistakes

in arbitrary hardware more than Trojans in cryptographic

Figure 5: Increasing AR with more strong SHA benchmarks.

hardware, so the malicious logic in all the AES benchmarks

are treated as design faults.

Furthermore, to increase the diversity of the benchmarks, we

downloaded seven different Verilog designs from OpenCore

[25]. We put those benchmarks in Table III. In these designs,

the DES Core takes a standard 56 bits key and 64 bits of data

as input and then generates a 64 bits results [26]. The 3DES

Core take three standard bits of the key as the DES Core

and then generates the 64 bits results. The MD5 benchmark
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implements a 64-stage pipeline hash function producing a 128-

bit hash value [27]. The rest of the four benchmarks belongs

to a collection of Secure Hash Algorithm (SHA) cores, which

includes implementations of one SHA-1 and three SHA-2

algorithms [28]. Again, we insert the leakage paths to simulate

the design faults into the designs. For each benchmark, the

leakage path is either a covert channel or an RF signal like

the Trojan embedded benchmarks from TrustHub.

Listing 3 aes 128.v using QIF-Verilog

module aes_128(clk, state, key, out);
input clk;
input [127:0] state, key;
Taint key;
output [127:0] out;
reg [127:0] s0, k0;
...

To set up the experiment, since the only secret in all the AES

benchmarks is 128 bits key, we consider a threshold value of

128 × 2.49 = 318.72 for the AES benchmarks depending on

Equation (7). Similarly, we label the key from DES as the

sensitive secret as well as one of the three keys in 3DES. The

threshold value for both the benchmarks is 56×2.49 = 139.44
For the MD5 and SHAs, the data chunk inputs, 512 bits for

the MD5 and 32 bits for the SHA collection, are labeled by

Taint in this experiment. Thus, the threshold value is 512×
2.49 = 1274.88 for the MD5 and is 32×2.49 = 79.68 for the

SHA collection, accordingly. In each output port of top model,

we check whether the security label Taint exists. If so, the

confidentiality of the system is broken and alarm is triggered.

Also, a suspicious label propagation path will be provided to

the developer. For comparison, we do not set threshold for

checking clear benchmarks without leakage paths, such that

an Accumulated RU for labeled signal key can be obtained

from the output port.

B. Results and Analysis

Table II and Table III show results of our experiments.

For each benchmark, we account the Accumulated RU in the

output of both the genuine version (with AR-C header) and the

Trojan embedded (with AR-T header) version. Corresponding

time cost are also recorded. We take the benchmark SHA-

1 160 in Table III as an example. The input data chunk

of SHA-1 160 core is labeled by Taint. An RF signal is

inserted as a leakage path shown in the last column. The AR

calculated from a genuine version is 143, which is larger than

the threshold. The AR from the leakage path insertion version

is 48, which is less than the threshold. It means that the leakage

path is detected successfully without a false-positive. The

entire working procedure takes 32.6 seconds to evaluate the

genuine version and 36 seconds for the leakage path insertion

version.

Then for all the benchmarks in both tables, the design faults

are all detected using the proposed method, and there are no

false-positive happen. Through the results, we observe that

the accumulated RU from the genuine version benchmark

is extremely larger than the leakage paths inserted version,

therefore there is a large space to adjust the threshold. It

means that the confidentiality between the genuine version

and leakage path existing version are clearly distinguishable

through using QIF-Verilog. From the detected information

leakage types, we summarize that our approach is capable

of detecting those Trojans or vulnerabilities whose payload

leaks information via logic outputs. From the diversity of

benchmarks, the proposed QIF-Verilog is effective to apply

to various RTL designs.

From the experimental results in Table IV, the time con-

sumptions of all the benchmarks are demonstrated. Because all

of the AES benchmarks from TrustHub are developed from the

same genuine AES benchmark, the time costs in formalization

stage are similar among the AES benchmarks. Hence in the

table, we use one of the AES benchmarks, AES-T1600, as the

representation. In the first column, the label (C) stands for the

clear/genuine version of the benchmark, while (T) means the

leakage-paths inserted version of the benchmark. We divide the

total time cost into two stages – a formalization stage which

formalizes the QIF-Verilog program to the DFG and an IFT

stage which performs the IFT analysis on the DFG. We denote

the time cost in the formalization stage as F-T, and in the IFT

analysis stage as IFT-T, accordingly. In the last column, we

show the ratio of F-T in the total time consumption, which

indicates that the formalization stage consumes more time

than the IFT stage for most of the benchmarks. Table IV

demonstrates that the vulnerability evaluation can be finished

in minutes. Even in the worst-case, the time cost is less than 18

minutes. Therefore, the QIF-Verilog is efficient for protecting

the confidentiality of large-scale hardware designs.

In the meantime, propagation paths of security labels can

be recorded by our solution. If the vulnerability is identified,

then the most suspicious path with RU in each transition

can be recorded by the designer for further evaluations. For

instance, we show the suspicious propagation path in AES-

T1600 Trojan embedded benchmark as the following:

AM Transmission.key→AM Transmission.SHIFTReg→
AM Transmission.beep2→AM Transmission.beeps→
AM Transmission.MUX Sel→AM Transmission.Antena

C. Soundness

The proposed QIF-Verilog provides an evaluation of in-

formation leakage vulnerability for a hardware design. From

Table II and Table III, the QIF-Verilog has been shown to be

effective in detecting vulnerable leakage paths. However, the

benchmarks from trusthub are developed for the purpose of

evaluating hardware Trojans, which are not same as design

vulnerabilities - we treat hardware Trojans as a subset of

hardware vulnerability. To prove the soundness of the proposed

OIF-Verilog, we utilize the results of benchmarks from the

collection of SHA implemented by the same author in the

same project [28]. It means that the code style and features

are consistent among the four different implementations. The

collection includes the cores of one SHA-1 (160) and three

SHA-2 (256/384/512).
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Both SHA-1 and SHA-2 are versions of the Secure Hashing

Algorithm, while SHA-2 is an enhanced successor of SHA-

1. The numbers 160/256/384/512 refer to hashes of different

bit-length. The shorter the bit-length of hash, like of SHA-

1 (160), the more vulnerable it is against attacks, such as

the collision and the length extension attacks [29], [30]. In

contrast, the SHA benchmark with a longer bit hash is more

secure because there are more possible combinations [31].

Therefore, we check the accumulated RU metric of the SHA

benchmarks and the results are shown in Figure 5. The Y-

axis in the histogram stands for the AR value. We find the

metric AR increases with the bit-length of the hash. Thus, we

can state the following soundness result: the AR values show

improved security with the increase of bit-length of the hash,

thus our proposed method is evaluating security of design

correctly.

VII. CONCLUSION

In this paper, QIF-Verilog, a secure language extended

from Verilog, is proposed to protect the confidentiality of a

large-scale secure hardware design. Given that the preliminary

language based secure solutions either lead to a high over-

head or are inflexible for practical use, our solution solves

these issues by introducing a new type Taint and applying

QIF model to Verilog semantics. Specifically, an accumulated

RU is generated through calculating entropy to quantify the

leakage of labelled secrets in the hardware design. In such

a way, the information leakage vulnerability can be detected

by identifying the security label in output without hardware

overhead. The results show that the approach is effective

against those vulnerabilities that leak sensitive information via

logical outputs. Also, our proposed approach is efficient and

practical for protecting large-scale hardware designs.

In the future, more properties and features will be consid-

ered in the QIF-Verilog. The integrity property will be con-

sidered to identify vulnerabilities caused by malicious mod-

ifications. Also, We will extend the QIF-Verilog for general

purpose hardware such as microprocessors. Besides the micro-

controller architecture, the storage like program memory will

also be formalized. A more systematic security evaluation will

be given by the QIF-Verilog.
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