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Abstract—Untrusted third-party vendors and manufacturers
have raised security concerns in hardware supply chain. Among
all existing solutions, formal verification methods provide pow-
erful solutions in detection malicious behaviors at the pre-silicon
stage. However, little work have been done towards built-in
hardware runtime verification at the post-silicon stage. In this
paper, a runtime formal verification framework is proposed
to evaluate the trust of hardware during its execution. This
framework combines the symbolic execution and SAT solving
methods to validate the user defined properties. The proposed
framework has been demonstrated on an FPGA platform using
an SoC design with untrusted IPs. The experimentation results
show that the proposed approach can provide high-level security
assurance for hardware at runtime.
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I. INTRODUCTION

The changing landscape of the semiconductor industry has

increased the demand for third-party intellectual property (IP)

cores. Various factors such as reduced time to market (TTM)

and lower design cost have led to the proliferation of the

IP market. Another contributor to this growth is the use of

System-on-Chip (SoC) platforms for mobile applications. SoC

is a monolithic chip containing all the essential components

for mimicking the functionality of a computing system. It is

designed by integrating multiple IP cores from trusted and

untrusted third party vendors.

Increasing number of third-party vendors have raised se-

curity concerns in the IC industry. Due to the extremely

high cost of building foundries, chip manufacturing is usu-

ally outsourced to existing foundries. Consequently, security

researchers in their respective domains have started putting

in considerable effort to ensure trustworthiness of third-party

resources. In the hardware security industry, multiple counter-

measures have been developed to protect SoC at pre- and post-

silicon stages [1]–[12]. However, these methods are designed

to protect the hardware only in certain scenarios [13]. A

comprehensive approach is required to protect against attacks

from untrusted vendors and manufacturers.

Formal methods have shown their importance in exhaustive

hardware security verification [3]–[6], but few of them were

designed for securing post-fabrication designs. For example,

in [4]–[6], the proof-carrying hardware (PCH) framework was

used to verify security properties of soft IP cores. Supported

by the Coq proof assistant [14], formal security properties

were formalized and proved to ensure the trustworthiness of

IP cores. However, model formalization and interactive proof

procedures in PCH limit the scenario into static verification

for design stage in the supply chain. Recently, Verifiable

ASICs was proposed in [15] where an encryption protocol

based approach was used against hardware Trojans in circuit

manufacturing. However, their goal of ensuring correctness of

computation incurred high costs in terms of complexity and

overhead in hardware.

In this paper, we address the runtime hardware security

verification challenge by extending our PCH framework from

static to dynamic (aka runtime) with Satisfiability (SAT)

solvers and symbolic executions.

SAT solvers have been used in many electronic design

automation fields like logic synthesis, verification, and testing

[16]–[18]. The SAT solvers are originally designed to solve

the well-known Boolean Satisfiability problem, which decides

whether a propositional logic formula can be satisfied given

value assignments of the variables in the formula [19]. How-

ever, due to the high computational complexity, SAT solvers

are not scalable to large designs.

Symbolic execution is a program analysis technique that can

explore multiple paths that a program could take under dif-

ferent inputs [20]. Integrating these two techniques overcome

the NP-Hard computation complexity issue in SAT solver

and it provides a comprehensive protection by automatically

checking the customized properties.

The main contributions of this paper are as follows.

• We combine the SAT solver with a static program analy-

sis method for runtime checking of security of hardware.

It is the first attempt to verify security properties on

runtime hardware by combining these techniques.

• We describe the method for decomposing the hardware

execution and the security specification into execution

paths and sub-specifications respectively. These execution

paths and sub-specifications are verified using a SAT

solver.

• The work improves the study of hardware runtime ver-

ification. Our enhanced PCH framework provide com-

prehensive protection of hardware by complying to user

specified security properties.

The rest of the paper is organized as follows: In Section

II, we discuss previous work on malicious logic detection

using formal techniques. In Section III, we introduce the

threat model and provide some relevant background on SAT

solver and static program analysis. We explain our integrated

framework, formalization, and decomposition of the hardware

and elaborate on the verification procedure in section IV.
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Section V presents demonstrations of our approach and final

conclusions are drawn in Section VI.

II. RELATED WORK

Formal methods have been extensively used for verifica-

tion and validation of security properties at pre- and post-

silicon stages [3]–[9], [21]. In [3], a multi-stage approach

was adopted for identifying suspicious signals using assertion

based verification, code coverage analysis, redundant circuit

removal, equivalence analysis, and sequential Automatic Test

Pattern Generation. The PCH framework has been effective

in ensuring trustworthiness of soft IP cores [4]–[6], [8], [9].

This method was inspired from the proof-carrying code (PCC)

for software assurance [22]. Drzevitzky et al. proposed the

first PCH framework for dynamically reconfigurable hardware

platforms [9]. They used runtime combinational equivalence

checkingto verify the equivalence between the design speci-

fication and the design implementation. However, instead of

using security properties, the approach verified safety policies

on the design. Another PCH framework was proposed for

security property verification on soft-IP cores [4]–[6], [8],

[23], [24]. In this framework, the Coq proof assistant [14]

was used to represent security properties, hardware designs,

and formal proofs. However, this framework can only provides

static verification on design stage of hardware other than the

runtime of hardware.

Recently, Verifiable ASICs was proposed by Wahby et.al.

[15] to verify the correctness of functionality of hardware

system. In their paper, runtime (or dynamic) verification was

performed by implementing an interactive encryption protocol

between untrusted ICs and a second trusted ICs, where the

untrusted ICs was called Prover and trusted ICs was called

Verifier. It was the first attempt to compute proofs of correct

execution through utilizing verifiable computation. However,

for security purpose, their correctness checking method would

result in high computational cost and overhead. Furthermore,

their method was designed for checking specific property

rather than the entire set of functional properties. In our

paper, we follow the Prover-Verifier architecture to build the

framework.

Meanwhile, many runtime hardware approaches were de-

veloped for information flow security, which could guarantee

that all information flows satisfy the given security policy. For

instance, GLIFT was proposed in [25] and could dynamically

detect malicious logic through tracking the information flow

in the hardware at runtime. Moreover, there are hardware

description languages that enforce security policies by adding

logic of information flow control in the hardware. Languages

such as Caisson [26], Sapper [27] and SecVerilog [13] belong

to this category. However, these information flow control

based techniques could provide protections which only against

information leakage. Our proposed runtime PCH framework

can against any user specified security properties by verifying

hardware designs.

Figure 1: Working procedure of runtime PCH framework

III. BACKGROUND

A. Attack Model

Hardware Trojans/Malicious logic can be inserted by adver-

saries at the different stages of the IC life-cycle. We assume

that the rogue agents at the third-party IP design house and

foundry can insert a hardware Trojan or backdoor to the

fabricated circuit. Such a Trojan can be triggered either by

a counter at a predetermined time, by an input vector, or

under certain physical conditions. Upon activation it can leak

sensitive information from the chip, modify functionality, or

cause a denial-of-service to the hardware.

B. Execution Paths

Symbolic execution is a popular static program analysis

technique that checks whether a software program satisfies

specified properties. In this method, execution paths that the

program should take are explored systematically to avoid the

space explosion problem. Specifically, inputs are represented

as symbols and the solvers are used to check whether there

are counter examples of the property. For each path, a Boolean

formula is derived to describe the conditions of the branches,

while a symbolic memory is used to map variables to symbolic

expressions. The Boolean formula is updated after executing

the branch and the symbolic memory is updated after each

assignment. In [20], a survey is provided to show many early

works on symbolic execution and its applications on software

testing and security.

As to the execution paths of the hardware, a path depen-

dency graph of Verilog-HDL (Verilog) programs was proposed

in [28], which could be applied for the static Verilog program

analysis. In our work, after obtaining the execution paths

from the golden model, the hardware designed is decomposed

into segments based on these paths. Then, the foundry man-

ufactures the ICs depending on these segments. Accordingly,

the mentioned Boolean formula will be maintained for each

segment and implemented in hardware in the form of the look-

up table (LUT).
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C. Hardware Based SAT Solver

The SAT solvers are used in a wide range of applications

such as model checking of hardware and software, circuit

synthesis, and testing [19]. However, due to the excessive com-

putation time, SAT solvers are often impractical for emerging

applications [29]. Early works on hardware accelerated SAT

solvers was surveyed in [30]. Solvers based on FPGA [29]

and GPU [31] were discussed, and all of these hardware

accelerated solvers had relative limitations. As we perform

decomposition of the design, the scalability of SAT solver is

not an issue.

In hardware verification using SAT solvers, a circuit is first

represented in conjunctive normal form (CNF). A CNF is a

conjunction of many clauses and each clause is a disjunction

of literals which include variables and their logical negations

[32]. SAT solver is designed to figure out the satisfaction of

the given CNF, which means that all clauses must get the value

True. Furthermore, there is at least one literal that gets True
for each clause. For most of the modern SAT solvers, Davis-

Putnam-Logemann-Loveland (DPLL), proposed in [33], is

applied as the kernel algorithm. In DPLL, a depth-first search

(DFS) is carried out to traverse all possible variables/literals

assignments as shown in Algorithm 1. In this paper, a DPLL

based SAT solver is implemented in hardware in the proposed

runtime PCH framework.

Algorithm 1 DPLL Algorithm

Input:
1: F � A CNF formula.

Output: Result � A Boolean value where True stands for

satisfaction and False stands for not-satisfaction.

2: Preprocess F ;

3: if F == False then
4: Result← False; return;

5: end if
6: Find the next unassigned variable, assign the value;

7: Deduce based on the assignment;

8: if F == False then
9: Result← False; return;

10: end if
11: if The conflict happened in derivation then
12: Analyze the conflict

13: if F can be looked back upon then
14: look back upon

15: else
16: Result← False; return;

17: end if
18: else
19: return to line 6.

20: end if

IV. RUNTIME PROOF-CARRYING HARDWARE

This section introduces the runtime PCH framework and

provides details of the design. A Prover is fabricated based on

the execution paths, while a DPLL SAT solver is implemented

as Verifier. In this section, we also discuss the decomposition

of security properties and distribution of proofs, which enable

the SAT solver to be used for large scale application.

A. Framework Overview and Property Decomposition

A trusted circuit is designed and manufactured by a trusted

foundry to verify the trustworthiness of the untrusted hard-

ware in runtime. Similar to [15], in our proposed new PCH

framework, the untrusted circuit from the third-party foundry

is called Prover P , while the trusted circuit is called Verifier
V as shown in Figure 1. If the verification of the security

properties/theorems is successful, it indicates that the Prover
is trustworthy. Further, Verifier can get all the information from

Prover. In the case where the verification fails, the Verifier can

disable the Prover at anytime.

The working procedure of our proposed framework is shown

in Figure. 1, and there are mainly two entities - untrusted

foundry and trusted integrator interacting in the framework.

Similar to the setting in [15], the untrusted foundry gets

requirements of ASICs from consumer, and then fabricates

the chips as part of Prover depending on the functionality

specifications, which is golden model in Figure 1. The other

part of Prover is from security specifications, which will be

introduced in details later in this section. Accordingly, the

trusted integrator, on the side of consumer, designs an extra

trusted circuit Verifier that can provide verification of Prover
on runtime and then combine Verifier and Prover together to

produce the runtime verification system S. The composition of

the final system S can be presented as Equation (1).

S := P ∧ V (1)

Further, the trusted integrator explores execution paths from

static program analysis of the functional golden model written

by hardware description language (HDL) like Verilog. In the

untrusted foundry side, each execution path will be manufac-

tured individually, and we call them individual circuit segment,
marked as seg. So we define the functionality of circuits inside

the P as F and then F is composed of many seg as shown in

Equation (2), where k ∈ Z is the total number of segments.

F := seg1 ∧ seg2 ∧ · · · ∧ segk (2)

Correspondingly, security property, defined as Prop, would

be given by the integrator and then decomposed into sub

security properties, defined as lemma. In Verifier side, sat-

isfaction of each sub property lemma will be verified for

the corresponding segment seg as shown in Figure 2. So the

system level security property Prop is constructed as Equation

(3).

Prop := lemma1 ∧ lemma2 ∧ · · · ∧ lemmak (3)

B. Distributed Proof-Carrying in Runtime

Along with the F , untrusted foundry requires to give proof

to satisfy lemma for each seg, and the proof is given in form

of CNF, defined as cnfseg in Equation (4) where n ∈ Z stands

for index number of a list, Tseitin is a transformation that

converts boolean circuits to CNF [34].
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Figure 2: Circuit segments and property decomposition

segn
Tseitin−→ cnfsegn (4)

Meanwhile, lemma need to be parsed to a hardware expres-

sion lemmaexpr that can be represented by using HDL. In our

proposed framework, parsing is made manually in the foundry

side. After that, a Tseitin transformation is utilized to convert

the lemmaexpr to a CNF, noted as cnfla. The procedure is

presented in Equation (5).

lemman
parse−→ lemmaexprn

Tseitin−→ cnflan (5)

Therefore, proof of sub property for segment is defined as

a conjunction of cnfseg and cnflan as shown in Equation

(6). Furthermore, the entire proof in system level, noted as

CNF , is composed of all the distributed cnfn as discribed in

Equation (7).

cnfn := cnfseg ∧ cnflan (6)

CNF := cnf1 ∧ cnf2 ∧ · · · ∧ cnfk (7)

Finally, in the following Equation (8), Prover is constructed

from functionality part F and proof part CNF . In the runtime

verification process, cnfn would be put into the DPLL SAT

sovler and verified individually. The verification details will

be discussed in the following part.

P := F ∧ CNF (8)

C. Design of Verifier and Runtime Verification Process

Except the segment and cnf block, the rest part of Figure

3 depicts the design of the Verifier which comprises a LUT

and a DPLL SAT solver. The LUT in the proposed framework

records information that whether the segment has been verified

or not. The LUT includes two columns, where the first column

contains a segment list and the second column has a binary

value for each segment i.e. 1 stands for verified, 0 stands

for not verified. Before the execution of a segment, the

corresponding value will be checked. If the segment has been

Figure 3: Structure of Verifier

verified, then the execution continues. Otherwise, the system

will be stalled and the verification of the segment is performed

first.

A DPLL SAT solver is implemented based on Algorithm

1. In the verification, Proof cnfn is delivered from Prover
to the solver, and satisfaction of the input cnfn will be

checked. If satisfied, then the relevant value in LUT table

will be updated as 1. If the given cnfn is unsolved, then the

Verifier will lock the segment by using an AND gate. From

the system viewpoint, the above runtime verification process

is represented in Algorithm 2.

V. CASE STUDY

To demonstrate the effectiveness of the proposed runtime

verification framework supported by the SAT solver, we utilize

a FPGA platform implementing a RS232 program. Specifi-

cally, the RS232-T100, written in Verilog, is selected as the

benchmark and obtained from [35]. The receiver side of this

RS232, a micro-UART core, is considered for verification

(see Figure 3). In order to prove the presence/absence of

hardware Trojan, we will check the important signals like

in/out interfaces.

In this experiment, we consider a hardware Trojan embed-

ded in the benchmark RS232-T100, which manipulates output

data to cause the Denial-of-Service (DoS) attack. Trigger of
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Algorithm 2 Runtime Verification Process

Input:
1: P � Prover

2: V � Verifier

Output: null
3: listnext, listcnf ;

4: ExePaths← P � Get all the execution paths

5: SAT ()← V � Get the SAT solver

6: checkTable()← V � Get the look-up table

7: listnext ← checkPath(ExePaths); � Get the next

execution paths

8: listcnf ← checkTable(listnext); � Whether the next

execution paths are verified

9: if listcnf == null then � All next execution paths

verified

10: Go to line 7;

11: else
12: For each cnf in listcnf :

13: SAT (cnf);
14: if All listcnf have solutions then
15: Go to line 7;

16: else
17: Lock the circuit, return;

18: end if
19: end if

Figure 4: Decomposition of receiver part in RS232-T100

this Trojan is detecting specific values among the control

signals state, bitCell cntrH , recd bitCntrH and output

signal rec dataH in the receiver part of the micro-UART

core. Once the Trojan is triggered, the payload of this Trojan

can stuck the output signals rec dataH and rec readyH as

zeros.

To detect such a DoS vulnerability, we observe the output

signal in consecutive time. A heuristic property is that the

output data should not always be 0 during data transmission.

In our case study, we decompose and formalize the above

heuristic property into lemmas depending on the segments of

Figure 5: Working procedure of verification of a segment

the benchmark. Figure 4 indicates the execution paths of the

receiver in micro-UART core and segments were set based

on the paths. Similar to the Verilog program control flow

graph in [28], the circuit is divided into an initial assignment

part followed by parallel always parts as shown in Figure 4.

Additionally, for RS232-T100 benchmark, Trojan is embedded

into the initial assignment part.

Then, depending on the working procedure in Figure 5,

verification is carried out on the segment which is going to

be executed. In the FPGA platform, gate level netlist file is

used to simulate the ASICs. The netlist file of each segment is

designed and synthesized by considering both golden model

and security lemma. Proof of the segment is in the form

of CNF, and part of the CNF is from the the netlist file.

Meanwhile, security lemma is translated to the expressions

written in Verilog. After that the expressions are converted to

the rest of the CNF. Finally, a DPLL SAT solver, implemented

in FPGA, is applied to check whether the solution of the input

CNF exists. If the CNF is satisfied, then SAT solver return a

signal to continue the execution or the system will stall.

In our case, an example security lemma for the initial

assignments segment in Figure 4 is formalized below:

∀t � ∃ t0, tn ∈ t : (t0 < tn) ∧ (tn − t0 > Vth)∧
(statet0→tn = Vwait) ∧ (rec dataHt0→tn = 0x00)

Here, t is the time parameter, state means the current state

of the RS232 system. rec dataH is the output port with 8 bits

length of the receiver part. Also, Vth∈Z is the threshold that

we set for the time interval. Vwait is a specific binary vector

with value is 3′b011 which implies that the system is waiting

for sampling in data transmission. The lemma states that if

output port generates zero values in too long consecutive time

during data transmission, then there is a high risk of under

DOS attack.

When the SAT solver gets a solution from the given CNF,

we can be assured that the proof of the lemma exist. Other-

wise, system will be locked for protection. In the above case,

the SAT solver we developed took 4668406745 clock cycles

or 9sec (2ns per clock cycles based on our configuration) for

returning an unsatisfaction conclusion for the proof/CNF of

initial assignments segment, which indeed contains the Trojan.

Meanwhile, the SAT solver took 7873 clock cycles or 15ms
for returning a satisfaction conclusion for the same segment
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without Trojan.

VI. CONCLUSION

In this paper, we give a solution for hardware runtime for-

mal verification of security properties. The proposed runtime

PCH framework integrates a static program analysis method

and a SAT solver, and provides a high-level protection by

verifying security properties defined by users. Furthermore,

decomposition of property and distributed proofs of segments

significantly reduces the computation complexity undertaken

by SAT solver. The proposed method was demonstrated using

FPGA and evaluated by verifying a RS232 benchmark with

an embedded Trojan. Consequently, the proposed approach

guarantees the security of hardware in runtime.

In future, we plan to use our approach for protecting large

scale designs such as processor. Also, automated tool will be

developed such as for auto generation of CNF. Furthermore,

more sophisticated Trojans or attacks will be tested in different

benchmarks using our runtime verification framework.
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