
Revisit Sequential Logic Obfuscation: Attacks and Defenses
Travis Meade∗, Zheng Zhao†, Shaojie Zhang∗, David Pan†, and Yier Jin‡

∗Department of Computer Science, University of Central Florida
†Department of Electrical and Computer Engineering, University of Texas at Austin
‡Department of Electrical and Computer Engineering, University of Central Florida

travm12@knights.ucf.edu, zhengzhao@utexas.edu, shzhang@cs.ucf.edu, dpan@ece.utexas.edu,

yier.jin@eecs.ucf.edu

Abstract—The urgent requests to protection integrated circuits
(IC) and hardware intellectual properties (IP) have led to the
development of various logic obfuscation methods. While most
existing solutions focus on the combinational logic or sequential
logic with full scan-chains, in this paper, we will revisit the
security of sequential logic obfuscation within circuits where full
scan-chains are not available or accessible. We will first introduce
attack methods to compromise obfuscated sequential circuits
leveraging newly developed netlist analysis tools. We will then
propose systematic solutions and provide guidelines in developing
resilient sequential logic obfuscation schemes.

I. INTRODUCTION

The globalization of IC supply chain has raised IC/IP

privacy concerns. Upon this request, various IC/IP protection

methods have been raised among which the leading solutions

to prevent reverse engineering attacks (or malicious foundry

attacks) are logic obfuscation methods. Most of the existing

solutions are targeting combinational circuits assuming that

full scan-chains are always available and accessible.
However, orthogonal to existing solutions, this paper re-

views the problem of hardware logic encryption and decryp-

tion in the realm of sequential logic. An intrinsic desire

to learn the fundamental characteristics of sequential logic

drives us to build a more effective attack model and design

stronger sequential logic encryption accordingly. Although

past defensive techniques focus on finite state machine (FSM)

encryption, there exist many methods to partially or fully

extract FSM logic from gate-level netlists [1]–[3]. While

potentially motivated by Trojan detection or even Hardware

obfuscation, methods like these can lead to fully reverse

engineering netlists.
Unlike the hardware obfuscation method HARPOON [4],

the proposed defense method here does not use an entrance-

FSM scheme which can be vulnerable to REFSM [1] and

fault injection attack. Rather, the focus falls on a given

sequential design per se, which is encrypted directly. In the

FSM representation of the encrypted design, application of

an incorrect key redirect some transitions to incorrect states.

The state space itself expands with new states. In this way,

the original FSM is entangled with the wrong FSM which

makes it much more difficult to be decrypted. In this way, the

problem becomes NP-complete even with the fully-reversed

FSMs; not to mention the golden model’s FSM cannot be

reversed without the gate-level netlist. Also worth noting the

proposed method can be used in parallel with HARPOON-like

techniques.
Our fundamental assumption is the unavailability of a

complete scan chain in the design, which either is non-existent

(usually for high performance ICs that has a stringent overhead

constraints) or can be protected by various scan chain securing

methods [5], [6]. To resolve the unknown gate functions and

registers, unrolling the sequential design while leveraging the

state of the art combinational SAT-based attack [7] creates

a simple baseline (unroll-and-SAT attack). SAT-based attack

is the latest attack technique for combinationally encrypted

designs. We notice the number of unrolling has a significant

impact on the time of decryption. On the protector’s side,

therefore, we try to increase the minimum number of unrolling

required to decrypt the design. For general designs that may

contain complete scan, we will have to resort to scan chain

protection techniques. The more registers to protect, the higher

security level becomes and the higher the overhead becomes.

The rest of this paper is organized as follows. Section

II presents the state-of-the-art and their limitations. Section

III introduces the vulnerabilities of existing sequential logic

obfuscation methods as well as possible attacks to these

methods. Section IV presents our enhanced sequential logic

obfuscation solutions and the design trade-offs between per-

formance overhead and attack complexities of these solutions.

The conclusions are drawn in Section V.

II. RELATED WORKS

Methods for protecting circuits through obfuscation abound

in modern research [8]–[10]. However, many of these methods

are completely or partially susceptible to attacks proposed in

research [7], [11]. Few methods utilize the temporal naturally

occurring in sequential circuits. The more recent sequential

models have limited usage of sequential logic [4], [12]. In [12]

a set of extra state elements stores a key that is XOR-ed with

a state on particular transitions to corrupt the function of the

netlist. For an example FSM in Figure 1a. The red transitions

for each FSM in Figure 1 denote incorrect transitions that

can prevent the netlist from unlocking or are only present

in locked FSMs. The key can be extracted by the previously

mentioned unroll-and-SAT attack. Alternatively, the protection

can be susceptible to FSM extraction, since only one transition

is incorrect.

A second popular sequential protection scheme, HAR-

POON [4], focuses on limiting access to the original FSM

by requiring an unlocking sequence of inputs. To do so

HARPOON expands the FSM’s state space. HARPOON then

uses the inserted states to corrupts parts of the circuit. For

an example FSM see Figure 1b. However, once the FSM’s

state is within a correct state, normal circuit execution will not

cause circuit corruption. Fault-injection attacks [13]–[15] can

978-1-4673-6853-7/17/$31.00 ©2017 IEEE
Authorized licensed use limited to: University of Florida. Downloaded on August 26,2020 at 22:08:55 UTC from IEEE Xplore. Restrictions apply.

be leveraged to prematurely transition to a correct state. Worse

off fault injection is not needed; due to the method’s limited

degree of inserted logic, FSM recovery tools can extract the

key sequence [16].

st

o1 o2

o6o4

rst

s1

s3

s2

Potentially Original FSMUnlocking FSM

o3

o5

o7

(a)

st

o1 o2

o3

o4

rst

s1

s3

s2

Original FSMObfuscation FSM

(b)

rst

s1

s3s2

Potentially Original FSM

o1

o2

o3

(c)

Fig. 1: (a) Interlocking FSM encryption (b) Example HARPOON
FSM (c) our proposed sequentially encryption FSM.

With the consideration of the state of the art defense, we

present a possible attack method that can recover chips pro-

tected with modern sequential obfuscation. We then propose

sequential encryption technique to overcome such attacks, by

creating a more complex structure, like HARPOON, while

potentially augmenting the functional FSM’s topology like that

in [12]. See Figure 1c for a comparison to other accepted

methods. Lastly the method can be evaluated by examining

the behavior when attacked by unroll-and-SAT.

III. ATTACK

A. Introduction to Sequential Logic Obfuscation

Sequential encryption schemes often focus their efforts

on the implicit logical FSM. The straightforward approach

increases the FSM’s state space thereby reducing access of the

original FSM. In addition access to the circuit’s true logic can

require a particular sequence of input vectors. Other methods

incorporate special locking states in the updated FSM. These

methods select a subset of states that can be accessed by the

new reset state but cannot reach the states of the original FSM.

Two main methods for increasing the state space exist.

The first method changes the logic of the registers to utilize

previously unreachable states. The other method involves

inserting additional registers that usually but not necessarily

act as flags for the FSM’s behavior. Additional registers tend to

be very appealing since the state space increase exponentially

with the number of inserted registers. The major detriments

to a large number of register insertions is the time to unlock,

area, and power overhead.

An example of sequential circuit encryption, HARPOON,

inserts additional state elements (SE) and combinational logic

that adversely affects the behavior of the netlist while the

circuit is locked. The inserted SEs control the activation of

the inserted combinational modules, that have the potential

to corrupt parts of the netlist. Moreover HARPOON’s FSM’s

state space is partitioned into three general sections (modes):

obfuscation, authentication, and original. The obfuscation

mode, the first part of the obfuscation mode, corrupts parts

of the netlist. The authentication mode simply watermarks

the netlist. The original mode, as it sounds, does not corrupt

the netlist’s internal signals and allows for normal execution.

The authors assume that an attacker would randomly reverse

engineer the netlist which gives the defender a large probabil-

ity of protection, but a smarter solution exists based on their

protection method.

B. Attacks on Sequential Logic Obfuscation

Attacking the HARPOON protection requires first identify-

ing the registers associated with the netlist’s mode control. In

general finding inserted registers partially reveals the function

of the chip’s logic. Several techniques can be used to extract

these registers.

The first method that can be used was a register classi-

fication tool, RELIC [17]. RELIC itself is a tool used to

separate parts of the netlist based on implicit features that are

induced when including either extra logic or circuitry. RELIC

finds repetitive wire patterns by examining the correlation

of a wire’s structural variables (e.g. fan in size, distance to

input/output wires, etc.). The outlying wires tend to fall into

the category of logic due to the nature of how netlists are

synthesized (i.e. a fixed protocol replicates structure within

data words). RELIC might not be capable of finding all the

inserted registers in one try. To compensate RELIC is used

to find partial register sets, and the sets expand via register

dependency.

The second method stems from the register set expansion

technique mentioned in the first method. With the process

RELIC itself is removed from the equation, and the register

dependency becomes the sole method for “classification”. This

is done by way of Tarjan’s Strongly Connected Components

(SCC) algorithm [18]. The algorithm finds what is commonly

referred to as the transitive closure of directed graphs. The

algorithm and properties are well detailed in other resources.

The graph returned contains a set of vertex sets that represent

SCCs of the original graph, which is potentially connected by

a set of directed edges that denote how the original graph’s

components interact. The graph itself is directed and acyclic

(see Figure 2).

The Strongly Connected Component graph can also be used

to attack more recent protection schemes such as DSD (Dy-

namic State-Deflection. DSD [19] relies on inserted, persistent

logic that is unaffected by the original logic (or original data

for that matter). Thus Tarjan’s algorithm can detect these

inserted state flip-flops. When observing the FSM and the

transition probability generated by these inserted FFs the

correct state becomes obvious. In general the components that

are analyzed are those that contain no incoming edges (i.e.

source SCCs). Source SCCs will exist because the graph is

acyclic (and presumably non-empty).

Once found, the inserted registers are used by the REFSM

tool to construct a partial FSM of the netlist. For protection

schemes such as HARPOON the desired FSM section (i.e.

original mode) is the authentication sequence’s “end”. The end

is found using Tarjan’s SCC algorithm. The FSM is broken

down into its components, and the component(s) without

outgoing edges (i.e. sink SCCs) are analyzed. If multiple

Authorized licensed use limited to: University of Florida. Downloaded on August 26,2020 at 22:08:55 UTC from IEEE Xplore. Restrictions apply.

sinks exist, the one selected is typically the component that

has the lowest reachability probability, as the others are

probably black-hole states (i.e. states that exist to trap incorrect

sequences). These black-hole states are typically included in

other protection methods. REFSM then generates the shortest

input sequence to enter a state within the supposed normal

mode FSM.

1

2

3

Fig. 2: A graph which is partitioned into its three SCCs. The

first being the only source SCC, and the third being the only

sink SCC.

The best chance a user has at improving HARPOON

without overhauling the method is to increase the complexity

of the FSM. With a large enough FSM it becomes infeasible

to extract the unlocking sequence. The major concern with

this approach is the incurred overhead. Aside from power and

area increase due to the increased number of SEs, the major

drawback is the time the circuit takes to unlock from power-

on.

Alternatively users can incorporate other defense tech-

niques. Although this would also not necessarily ensure pro-

tection, it would definitely make reverse engineering even

more difficult for adversaries. A typical defense that has been

prevalent in current research is the use of gate camouflaging.

Even though methods exist that can break standard gate

camouflaging, the mixture of methods can slow down or even

halt IP piracy.

IV. DEFENSE

To conquer the limitations of HARPOON, we present a new

defense that encrypts the state space such that the original state

space and the wrong state space are entangled. In this way,

SCC-based approaches cannot be easily applied to distinguish

the right state or transition from wrong.

In order to defeat SCC, we select the states and its outgoing

transitions of the original design to encrypt, so that there is no

FSM sink containing exclusively the original state space. By

adding the key conditions on the transitions, we can assure

a correct transition if a correct key is applied and a wrong

transition otherwise. There are several methods that encrypt a

given state S∗ with assignments of wrong keys.

The first choice is to redirect the state S∗ to another

state existing in the original state space, where the PO’s of

this chosen state and S∗ are the same under the transitional

condition of PI’s. The second way also redirects S∗ to an

existing state but the outputs are different. The third way is to

create new states with a certain choice of PO values.

If a wrong transition results in the same PO, then an

attacker would have to unroll at least one more round. While

possible, creation of fake transitions that mimic the original

behavior continues, which increases the required number of

unrollings. To break many SAT attack methods insertion

of camouflaged AND-trees for encrypted states can be em-

ployed [11], [20]. The methods guarantee an exponential

number of SAT iterations with respect to the AND-tree size.

It should be noted that the major drawbacks of AND-tree

insertion is low output corruptibility.

Selection schemes should not only consider the decryption

complexity but also the overhead of encryption. Reusing states

in the original state space is not necessarily better than creating

new states. When adding gates so that a state transition

function changes, previously unreachable states have a higher

probability of being reached. On the other hand, reusing the

original states might require many inserted gates. State reuse

is yet another option in consideration when minimizing the

overhead.

Still, states and transitions encryption selection challenges

researchers. High-level code extraction techniques such as

REFSM can recover FSMs from the proposed scheme as it

is. By examining the transitions that lead to an encrypted

state (presuming the adversary knows it), REFSM can look at

the transition (and its conditions) from this encrypted state to

figure out the correct key. However, REFSM scales poorly. If

the number of states is large, the transitions are complex, or the

fake transitions are cleverly chosen that prohibit REFSM from

identifying the non-encrypted from the encrypted states easily,

as this would exploit REFSM’s scalability limitation. As the

method proposed in [1] is essentially breadth-first search, we

naturally give a higher encryption priority for the deeper states

that will be reached later using REFSM. The state reachability

probability falls into a second criterion position. The reason

being to encrypt the states at the same structural depth entails

the same number of unrolling, whence decryption complexity

due to unrolling; while operating in these states, the states

more likely to be reached during operation can expect a higher

degree of output corruption.

In addition to the attack vector of REFSM which can

exploit Tarjan’s SCC algorithm, the SAT-based attack is also

considered. SAT-based attack is another powerful up to date

attack which is designed to take advantage of the input-output

patterns. The attacker decrypts the key by applying primary

inputs PI’s and observing primary outputs (PO’s) of the

unencrypted oracle/golden circuit. However, the protected scan

chain removes the attacker’s control state register’s outputs and

limits their observation of register inputs.

In order to assure all the inputs PI’s and the register inputs

fed into the combinational part are equivalent for the golden

and encrypted circuits, the attacker can resort to unrolling. For

each unrolling round, the attacker utilizes the same key signals

for the new round. Further unrolling will likely decrease the

key space further1. However, the outcome of unrolling is a

circuit that is several times larger than the original. Even if

the number of key bits does not increase, Figure 3 shows

decryption time increases drastically as the unrolling number

increases. It turns out that the required number of unrolling

times is equal to the minimal depth of an encrypted state

to be reached from the reset state. Hence the strategy to

1Some circuit might not decrease the key space with an unrolling.

Authorized licensed use limited to: University of Florida. Downloaded on August 26,2020 at 22:08:55 UTC from IEEE Xplore. Restrictions apply.

choose deeper states and transitions to encrypt also works

against SAT-based attack. Previous work [21] shows that the

depth of small benchmarks (e.g., s208.1 and s526) can exceed

hundreds.

10 20 30 40 50 60

#Unrolled frames

10 1

10 2

10 3

10 4

D
ec

re
yp

tio
n

tim
e

(s
ec

)

s713
s820
s832
s967
s1196
s1494

Fig. 3: Logarithmic decryption runtime with respect to the

number of unroll times.

The above discussion is based on the condition that com-

plete scan chain is unavailable in the given design. If, however,

the scan chain is complete in the design, there is a need

to protect some of the state registers to take advantage of

sequential encryption. As the protection overhead increases

with more registers being covered in scan chain [22], [23],

there is a trade-off relation of the number of registers to

protect, the overhead of protection, and the security level to

achieve.

Figure 4 shows the example of how different choices of

scan-chain covered registers can result in different unrolling

depth that is required for the final FSM. A good choice of state

registers to protect should carefully evaluate the differences.

Fig. 4: Off-scan chain registers selection.

V. CONCLUSIONS

In this paper, we have revisited existing sequential logic

encryption solutions. More specifically, we have introduced the

security vulnerabilities of existing solutions and presented sev-

eral attack methods to break the obfuscation schemes. Resilient

sequential logic obfuscation methods were then discussed

outlining the preliminary requests to secure sequential circuits

without full scan-chain accesses. As our future research tasks,

we will materialize the developed solutions to develop efficient

sequential logic obfuscation solutions.

REFERENCES

[1] T. Meade, S. Zhang, and Y. Jin, “Netlist reverse engineering for high-
level functionality reconstruction,” in 21st Asia and South Pacific Design
Automation Conference (ASP-DAC), 2016, pp. 655–660.

[2] Y. Shi, C. W. Ting, B.-H. Gwee, and Y. Ren, “A highly efficient method
for extracting fsms from flattened gate-level netlist,” in Circuits and
Systems (ISCAS), Proceedings of 2010 IEEE International Symposium
on. IEEE, 2010, pp. 2610–2613.

[3] A. Nahiyan, K. Xiao, K. Yang, Y. Jin, D. Forte, and M. Tehra-
nipoor, “Avfsm: a framework for identifying and mitigating vulnera-
bilities in fsms,” in Design Automation Conference (DAC), 2016 53nd
ACM/EDAC/IEEE. IEEE, 2016, pp. 1–6.

[4] R. Chakraborty and S. Bhunia, “HARPOON: An obfuscation-based soc
design methodology for hardware protection,” IEEE J. Technol. Comput.
Aided Design, vol. 28, no. 10, pp. 1493–1502, 2009.

[5] G. Sengar, D. Mukhopadhyay, and D. Chowdhury, “Secured flipped
scan-chain model for crypto-architecture,” Computer-Aided Design of
Integrated Circuits and Systems, IEEE Transactions on, vol. 26, no. 11,
pp. 2080–2084, 2007.

[6] S. Paul, R. Chakraborty, and S. Bhunia, “Vim-scan: A low overhead
scan design approach for protection of secret key in scan-based secure
chips,” in VLSI Test Symposium, 2007. 25th IEEE, 2007, pp. 455–460.

[7] M. El Massad, S. Garg, and M. V. Tripunitara, “Integrated circuit (ic)
decamouflaging: Reverse engineering camouflaged ics within minutes.”
in NDSS, 2015.

[8] M. Yasin, B. Mazumdar, J. J. Rajendran, and O. Sinanoglu, “Sarlock:
Sat attack resistant logic locking,” in Hardware Oriented Security and
Trust (HOST), 2016 IEEE International Symposium on. IEEE, 2016,
pp. 236–241.

[9] J. A. Roy, F. Koushanfar, and I. L. Markov, “Epic: Ending piracy
of integrated circuits,” in Proceedings of the conference on Design,
automation and test in Europe. ACM, 2008, pp. 1069–1074.

[10] J. Rajendran, Y. Pino, O. Sinanoglu, and R. Karri, “Security analysis of
logic obfuscation,” in Proceedings of the 49th Annual Design Automa-
tion Conference. ACM, 2012, pp. 83–89.

[11] P. Subramanyan, S. Ray, and S. Malik, “Evaluating the security of
logic encryption algorithms,” in Hardware Oriented Security and Trust
(HOST), 2015 IEEE International Symposium on. IEEE, 2015, pp.
137–143.

[12] A. R. Desai, M. S. Hsiao, C. Wang, L. Nazhandali, and S. Hall,
“Interlocking obfuscation for anti-tamper hardware,” in Proceedings of
the Eighth Annual Cyber Security and Information Intelligence Research
Workshop. ACM, 2013, p. 8.

[13] A. Barenghi, L. Breveglieri, I. Koren, and D. Naccache, “Fault injection
attacks on cryptographic devices: Theory, practice, and countermea-
sures,” Proceedings of the IEEE, vol. 100, no. 11, pp. 3056–3076, 2012.

[14] C. H. Kim and J.-J. Quisquater, “Faults, injection methods, and fault
attacks,” IEEE Design & Test of Computers, vol. 24, no. 6, pp. 544–
545, 2007.

[15] K. Rothbart, U. Neffe, C. Steger, R. Weiss, E. Rieger, and A. Mühlberger,
“High level fault injection for attack simulation in smart cards,” in Test
Symposium, 2004. 13th Asian. IEEE, 2004, pp. 118–121.

[16] T. Meade, S. Zhang, and Y. Jin, “Netlist reverse engineering for high-
level functionality reconstruction,” in 2016 21st Asia and South Pacific
Design Automation Conference (ASP-DAC). IEEE, 2016, pp. 655–660.

[17] T. Meade, Y. Jin, M. Tehranipoor, and S. Zhang, “Gate-level netlist
reverse engineering for trojan detection and hardware security,” in The
IEEE International Symposium on Circuits and Systems (ISCAS), 2016,
pp. 1334–1337.

[18] R. Tarjan, “Depth-first search and linear graph algorithms,” SIAM
Journal on Computing, vol. 1, no. 2, pp. 146–160, 1972. [Online].
Available: http://dx.doi.org/10.1137/0201010

[19] J. Dofe, Y. Zhang, and Q. Yu, “Dsd: a dynamic state-deflection method
for gate-level netlist obfuscation,” in VLSI (ISVLSI), 2016 IEEE Com-
puter Society Annual Symposium on. IEEE, 2016, pp. 565–570.

[20] M. Li, K. Shamsi, T. Meade, Z. Zhao, B. Yu, Y. Jin, and D. Z. Pan,
“Provably secure camouflaging strategy for ic protection,” 2016.

[21] M. Mneimneh and K. Sakallah, “Sat-based sequential depth compu-
tation,” in Proceedings of the 2003 Asia and South Pacific Design
Automation Conference. ACM, 2003, pp. 87–92.

[22] J. Lee, M. Tehranipoor, C. Patel, and J. Plusquellic, “Securing designs
against scan-based side-channel attacks,” IEEE transactions on depend-
able and secure computing, vol. 4, no. 4, pp. 325–336, 2007.

[23] D. Hély, F. Bancel, M.-L. Flottes, and B. Rouzeyre, “Securing scan
control in crypto chips,” Journal of Electronic Testing, vol. 23, no. 5,
pp. 457–464, 2007.

Authorized licensed use limited to: University of Florida. Downloaded on August 26,2020 at 22:08:55 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

