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Abstract—Logic locking, and Integrated Circuit (IC) Camou-
flaging, are techniques that try to hide the design of an IC from
a malicious foundry or end-user by introducing ambiguity into
the netlist of the circuit. While over the past decade an array
of such techniques have been proposed, their security has been
constantly challenged by algorithmic attacks. This may in part
be due to a lack of formally defined notions of security in the
first place, and hence a lack of security guarantees based on
long-standing hardness assumptions.

In this paper we take a formal approach. We define the
problem of circuit locking (cL) as transforming an original circuit
to a locked one which is “unintelligable” without a secret key
(this can model camouflaging and split-manufacturing in addition
to logic locking). We define several notions of security for cL
under different adversary models. Using long standing results
from computational learning theory we show the impossibility of
exponentially approximation-resilient locking in the presence of
an oracle for large classes of Boolean circuits. We then show how
exact-recovery-resiliency and a more relaxed notion of security
that we coin “best-possible” approximation-resiliency can be
provably guaranteed with polynomial overhead. Our theoretical
analysis directly results in stronger attacks and defenses which we
demonstrate through experimental results on benchmark circuits.

I. INTRODUCTION

In today’s globalized semiconductor industry, fabless design

houses hand over the design to the foundry which then has

complete knowledge of the physical layout of the design.

This business model results in several major security concerns.

These broadly include, 1) the theft of the design and the

intellectual property inherent to it, 2) overproduction, and 3)

the possibility of malicious modification of the design by the

foundry. In addition to these foundry threats, fabricated ICs

are under the threat of microscopy-based reverse engineering

and netlist recovery by end-users.
There are three broad categories of techniques that allow

the designer to hide the design of the circuit from the foundry,

the end-user, or both. These are : 1) IC camouflaging [1], 2)

logic locking [2], [3], and 3) split-manufacturing [4]. IC cam-

ouflaging is based on using special layout structures that are

difficult to disambiguate under conventional microscopy-based

reverse engineering techniques thwarting end-user attackers

while providing no protection against the foundry. Logic

locking is based on adding programmability to the design,

such that a post-fabrication configuration step is necessary

for the circuit to function correctly. Logic locking can protect

against both the foundry and the end-user if the programmable

technology is inspection-resilient. Split-manufacturing is based

on fabricating only the lower layers of the design in the un-

trusted foundry hiding away the upper interconnect layers from

the foundry while providing no protection against end-user

microscopy-based reverse engineering. The primary metric of

evaluation for these design hiding schemes is the security they

provide versus/divided-by the overhead and cost that they incur

to the IC and the manufacturing process.
Unlike split-manufacturing, logic locking and IC camouflag-

ing do not need a second foundry. Various locking and camou-

flaging techniques have been proposed in the past decade and

several intriguing algorithmic attacks have been demonstrated

against them. A very successful category of such attacks is

oracle-guided attacks in which the attacker is assumed to have

access to a functional circuit that can produce correct outputs

for chosen input patterns [1], [5], [6]. These patterns can be

used to disambiguate the netlist. Among these attacks, SAT

attacks [5], [6] which are based on iterative SAT queries, are

the strongest and have been shown to deobfuscate a variety of

low-overhead locking and camouflaging techniques.
Attempts have been made to thwart SAT attacks and oracle-

guided attacks in general by exponentially increasing the

minimum number of queries needed to resolve the circuit [3].

However, exponentially increasing the number of minimum

queries often results in a degraded error rate, i.e. the proba-

bility of an incorrect key producing incorrect outputs. As a

result, these schemes have been attacked with approximation

attacks [7], [8] raising the question of whether approximation-

resiliency is possible with strong guarantees.
Modern cryptography research is dominated by what is

known as the reductionist approach to proving security. In

this approach to cryptographic problems, security itself is

defined formally, and then proved using assumptions on the

security of sub-modules of the protocol, plus hardness of

particular computational problems such as factoring. While

such formalities can provide little help in the design of fast

heuristic primitives such as block and stream ciphers (e.g. we

lack a formal proof of security for AES), they dominate almost

all other areas of modern research in cryptography such as

public-key encryption, post-quantum cryptography, obfusca-

tion, homomorphic encryption, and protocols. In this paper

we try to take a similar approach to the security analysis of

design hiding schemes in particular locking and camouflaging.

We show how such a formalism can have several intriguing

results. Specifically we deliver the following contributions:

• We formally define the problem of circuit locking that can

model all three design hiding techniques. We then define
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several notions of security that model different practical

attacker-defender scenarios under different threat models.

• We show via long-standing results in computational learn-

ing theory why it may be impossible to satisfy the

approximation-resiliency notion of security for low depth

combinational circuits under oracle-guided attacks.

• We define a more relaxed notions of security called

best-possible approximation-resiliency. For this definition

of security we present a construction that information-

theoretically satisfies it with polynomial overhead.

• We complement our theoretical results with experiments on

benchmark circuits. The theoretical formalization directly

implies black-box-only exact/approximate deobfuscation

attacks which we demonstrate in practice.

The paper is organized as follows. Section II defines circuit

locking and security properties. Section III presents construc-

tions that satisfy security definitions. Section IV presents the

experimentation results and Section V concludes the paper.

II. DEFINING CIRCUIT LOCKING AND ITS SECURITY

A. A Common Model for Design Hiding Schemes

Consider the following transformation that adds additional

inputs to a Boolean function (circuit). This transformation

takes an original circuit co(i) : I → O and converts it to

a keyed/augmented/locked circuit ce(i, k) : I × K → O by

adding l key-inputs/variables to the circuit, hence K = F
l
2 is

the key space and there is a correct key k∗ ∈ K∗ ⊂ K for

which ∀i ∈ I we have ce(i, k∗) = co(i). i.e. loading the correct

key into ce makes it behave exactly as co on all inputs. co
and ce can be sequential/stateful circuits that operate on state

vectors so and se respectively. Different values of k induce a

function space C = {ce(i, k)|k ∈ K} which the attacker has

to sort through in order to recover co.
Logic locking or “key-based obfuscation” is implemented in

silicon by inserting programmable elements in the IC design

and configuring them post fabrication. Hence, it is easy to

see how logic locking can be modeled directly by the above

transformation; by taking the programmable elements as key-

inputs. IC camouflaging on the other hand, is implemented

using special nano-device structures that are ambiguous to

the physical reverse engineer. For IC camouflaging, the am-

biguity in the reverse engineered netlist can be encoded by a

polynomially bounded number of key-inputs in the number of

ambiguous camouflaged elements. There are numerous ways

to encode the function space C as long as C still includes

the original function co. Split-manufacturing can also be

modeled this way by encoding all the missing interconnect

information using multiplexers (MUXs) controlled by key-

inputs and subsequently defining the function space C. Figure

1 shows how various netlist ambiguities can be encoded with

key-inputs with polynomial inflation.
Since this transformation directly models logic locking, and

indirectly IC camouflaging and split-manufacturing, in our

paper we refer to the mathematical problem itself as circuit
locking (cL). We refrain from using the term obfuscation, to

avoid confusion with the famous problem of program/circuit

LUT

Fig. 1: (a) missing interconnect information, (b) ambiguous gate, and
(c) key-wire, can all be modeled using key-inputs with polynomial
overhead: (a) with key-controlled MUX logic, (b) with key-controlled
look-up-tables (LUT), and (c) key-wires directly with key-inputs.

obfuscation in cryptography [9], in which the functionality of

the obfuscated circuit/program is not altered. This is while

in cL the functionality is exploded into a new space C and

additional key-inputs are added1. In addition, we have to

always keep in mind the distinction between the mathematical

problem cL which we will define and discuss in detail in this

paper, and the practical design hiding flow (logic locking/IC

camouflaging/split-manufacturing) that it can model.

B. Threat Models and Physical Security

Oracle access to co is a critical issue in defining security for

cL. We take this into account in our mathematical framework

using the oracle-guided (OG) and oracle-less (OL) tags. Before

defining cL, it is important to understand which attack model

to use in practical scenarios. For instance, for camouflaged

ICs, if an attacker can buy two camouflaged ICs, use one

to recover the ambiguous netlist ce, and use the other as an

oracle co, then the oracle-guided attack model should be used.

In the case of logic locking, an oracle-less attack model is

viable only if the attacker is the foundry that is fabricating the

first ever batch of a design, for which an activated version of

the locked circuit is not available through any other means.

For split-manufacturing an oracle-guided attack model is only

reasonable for a foundry attacker that has the bottom layout,

can buy a functional chip from the market, and does not have

the capability or want to invest to physically reverse engineer

the top layers of the oracle chip obtained from the market.
If the attacker has access to all internal registers, ce and co

are combinational circuits. If there are state-elements that are

part of feedback loops in between observable and controllable

points in the oracle, the cL problem becomes sequential with

stateful ce and co. The more granular the access of the attacker

to the oracle wires the stronger the attacker becomes and the

harder it is to secure cL. For instance, if an attacker has access

to t > 0 number of the active values of the oracle’s internal

wires through photon-emission microscopy, laser-probing, or

physical probing [10], it will become almost impossible to

secure cL since the attacker can simply probe the value of

key-variables or their immediate cones and learn the circuit.

Furthermore, for locking and camouflaging, the ambiguous

nano-device itself should be secure against microscopy in

order for the cL problem defined in this paper to model it.

1We can use the term deobfuscation to refer to algorithmic attacks against
locking as it does not collide with a heavily used term in another area.
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Fig. 2: Locking with a key-mapping. The attacker can find all of T ’s
logic because all the wires in T are exclusively controlled by key-
inputs. The attacker can remove T if the functionality of the original
circuit is the target.

C. Circuit Locking Goals

Before defining cL and notions of security precisely, it is im-

portant to ask the question: what do we intuitively expect from

circuit locking? The following two goals are used typically in

related literature:

• Inoperability of fabricated ICs without the correct key. In

this case, the defender only wants to make it difficult to

activate a fabricated IC without the correct key.

• Hiding the functionality of the design. Functionality in this

context is the truth-table or any other (concise) represen-

tations of the Boolean function implemented by the circuit

such as a netlist, Binary-Decision-Diagram (BDD), etc.

The first goal has been used in several published work. A

recent example is the “delay locking” presented in [11]. In

this work a circuit equivalent to co can be recovered form ce.

However, added variable-delay elements that are controlled by

key-inputs make it difficult to unlock another fabricated chip

since a key that will result in the correct timing behavior for

the fabricated chip is not known to the attacker. A second

example is the performance locking in [12]. In this scheme

again, a circuit equivalent to co can be recovered, however,

the recovered circuit may be exponentially slower.

The third example is the scheme presented in [13] in which

a key-transformation is used. Key transformations between an

external and an internal key can seem quite useful in logic

locking. Formally one transforms ce(i, k) to c′e(i, kext) ≡
ce(i, T (kext)) as seen in Figure 2. In [13], an XOR array

is used to XOR key-bits with one another to cause a single

key-bit flip on the external key to result in numerous internal

key-bit flips which can improve error rate and entropy. It

is tempting to use a physical-uncloanable-function (PUF) to

perform the key-mapping giving each chip a unique external

key with a shared internal key. While these techniques hamper

activating an already fabricated IC, as for the functionality, the

functional attacker is interested in the Boolean function of co
and hence can replace c′e with any other keyed circuit that

induces a function space C as long as co ∈ C. The attacker

can find T by searching for wires controlled exclusively by

keys and remove T from c′e. Any key-exclusive logic that does

not mix with primary inputs although can contribute to the first

goal, it does not contribute to functional secrecy.

We present two arguments for focusing on the second goal

of functional secrecy: 1) An attacker who obtains the func-

tionality of the design can use re-synthesis and optimization

techniques to improve the design. Hence, for a performance-

based locking scheme, the security relies on ensuring that

the subsequent performance optimization problem is difficult.

This becomes particularly challenging to ensure for smaller

circuits. 2) The first goal of inoperability of fabricated ICs

can be easily guaranteed with much simpler solutions! For

instance, comparing a sufficiently long input string to a unique

key stored on a tamper-proof memory in the IC, and activating

the power or enabling a critical signal in the design only upon

receiving this correct key achieves this goal. The only overhead

for this scheme comes from one comparator logic for the entire

chip. As such, the second goal of functional secrecy is the

more intuitive and elusive target for circuit locking. We build

our formal framework around functional secrecy.

D. Combinational Circuit Locking

The complexity theoretic model of circuits is based on

Directed-Acyclic-Graphs (DAGs) with each node representing

a gate from the basis, i.e. the set of possible gates that the

circuit can use. Circuits of depth O(logi(n)) on n inputs

that use the AND/OR/NOT basis with bounded/unbounded

fanin can solve problems in the complexity classes NCi/ACi

respectively. Adding threshold gates which can compute the

majority of input bits to the basis, with unbounded fanin,

solves the complexity class TCi. We define the combinational

circuit locking scheme on DAG circuit families:

DEFINITION 1 (Combinational Circuit Locking (cL) scheme).

A Combinational Circuit Locking (cL) scheme for a family
of stateless DAG circuits {Cλ} is a probabilistic polynomial
time (PPT) algorithm Lock that takes security parameter λ
and an original circuit co ∈ {Cλ} and returns the locked
combinational circuit ce and a correct key k∗ where we have
the following:

- (l Added Key-inputs) When co : I → O where I = F
n
2

and O = F
m
2 , Lock(λ, co) returns ce : I×K → O where

K = F
l
2.

- (Correct Functionality under Correct Key) We have ∀i ∈
I, ce(i, k∗) = co(i).

- (Polynomial Overhead) We have size(ce) ≤
poly(size(co)) and depth(ce) ≤ poly(depth(co)).

E. Defining Security

Before defining security we expand on a couple of important

concepts herein.

Perfect security. Consider a circuit that can be programmed

to implement all possible n to m bit Boolean functions by

configuring the key. This circuit can be implemented by m
look-up-tables (LUT) with 2n entries, each entry controlled

by a key-bit. We refer to this as the ExpLUT(n,m) circuit.

A cL scheme that simply produces ExpLUT(n,m) for

any n-input m-output circuit is intuitively the best that a

cL scheme can do. This is analogous to the inefficient one-

time-pad in cryptography that achieves information-theoretic

(perfect, or with zero leakage) security. The locked circuit

is not leaking any information regarding co and each query

to an oracle of co reveals a single truth-table entry of co.

However, this scheme is not only inefficient but results in

a security dichotomy: If the number of inputs n is small
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enough for ExpLUT(n,m) to fit on an IC, it must be small

enough for the attacker to query and learn completely. Hence,

we are interested in achieving super-polynomial security with

polynomially sized circuits which is why the third constraint

in Definition 1 is necessary.

Oracle Access. In terms of oracle-access we have the oracle-

less (OL) and oracle-guided (OG) models. We assume oracle-

guided attacks to be adaptive in nature since in the context of

circuit locking the chosen-plaintext versus adaptive-chosen-

plaintext attacker distinction made in cryptography is not

realistic. This is because an oracle circuit can be queried

indefinitely by the attacker. We assume that queries on the

oracle take constant time. Now we are ready to define security.

DEFINITION 2 (Exact Functional Secrecy (EFS)). EFS-OG
corresponds to the following adversary game. The adversary
A has ce and can make up to q chosen input queries to co
and wins by returning a representation perfectly equivalent
to co. We say a cL scheme is (t, q, σ)-EFS-OG secure, if the
advantage (probability of winning the game) of any A bounded
by t operations2 is no more than σ better than adversary
A′ that makes q queries and randomly guesses the remaining
2n−q entries of co’s truth table. (t, σ)-EFS-OL corresponds to
a similar game except the adversary has no access to an oracle
that implements co ((t, σ)-EFS-OL ≡ (t, 0, σ)-EFS-OG).

The above definition requires the attacker to extract a

perfect reconstruction of co. A stronger security criteria is

approximation-resiliency which we define as follows:

DEFINITION 3 (Approximate Functional Secrecy (AFS)). The
adversary A has ce and can make up to q chosen input queries
to co and has to return an ε-approximation3 of co. We say that
a cL scheme is (t, q, ε, σ)-AFS-OG secure if the advantage of
any A bounded by t operations is no more than σ better than
the advantage of the adversary A′ that makes q queries to co
and randomly guesses the remaining 2n−q truth-table entries.
As for OL attackers, (t, ε, σ)-AFS-OL ≡ (t, 0, ε, σ)-AFS-OG

The following can immediately be derived:

PROPOSITION 1. AFS-OG implies AFS-OL and EFS-OG im-
plies EFS-OL,respectively. In addition, AFS implies EFS.

PROPOSITION 2. t-EFS/AFS-OG imply t-hardness of recover-
ing an exact/approximate key (an approximate key is a kapp
s.t. ce(i, kapp) ε-approximates co) respectively, but the reverse
is not true.

F. Oracle Learnability

Intuitively, AFS security demands that the rate of learning the

locked circuit should not exceed that of learning the truth-table

entry by entry. Authors in [14] first showed that combinational

benchmark circuits can be learned with deep neural networks.

Here we prove that this is in fact a fundamental issue inhibiting

2Any algorithm with circuit size complexity bounded by t.
3An ε-approximation of f disagrees with f on at most an ε fraction of

the input space. For multi-output f disagreement in this context is defined as
the average of disagreement of individual output bits. A word-level ε can be
defined in cases where world-level information is important which is outside
the scope of this paper.

AFS security. Many classes of Boolean functions are learnable
from random or chosen input-output pairs in polynomial time
at a rate significantly better than learning their truth-table.

Hence, instead of bothering with attacking the locked circuit

ce, the OG attacker can directly try to learn co with significant

statistical advantage.

We draw upon results from computational learning theory

[15] for this argument. In learning theory a learner L intends

to learn the functionality of a target function ft. The target

function ft is a member of a hypothesis space H. H can

be used to also encode any a priori knowledge about ft.
Two kinds of queries are discussed in learning literature:

membership queries in which the learner can query x and

receive ft(x), and equivalence queries where the learner can

query the function ht and receive whether ht and ft are

equivalent or not. Equivalence queries are not possible under

the oracle-guided attack model in our case of cL.

A Probably-Approximately-Correct (PAC)-learner for a

class of representations C is an algorithm L that can produce

an ε-approximation of any f ∈ C given access to random
(x, f(x)) pairs drawn from a distribution D with success

rate δ. An efficient PAC-learner finishes this task in time

poly(n, 1/ε, δ). The δ parameter is necessary since any PAC-

learner will have probabilistic success in reaching a particular

ε. OG attacks in cL differ from PAC-learning in that there is

no reason to restrict the attacker to samples drawn only from

D. Instead the attacker is assumed to have the more powerful

tool of membership queries (chosen inputs).

Learning theory studies some important function classes: a)

Disjunctive-Normal-Form (DNF) / Conjunctive-Normal-Form

(CNF) formulas which are OR/ANDs of AND/ORs of input

variables respectively. The size of a CNF/DNF formula is the

number of terms in it, and its width is the maximum number

of literals in each term. b) Decision-Trees (DTs) are rooted

trees with a variable xi on each vertex and 1 and -1 outgoing

edges that eventually lead to constant values. The size of a DT

is the number of leafs in the tree and its depth is the length of

the maximum path from the root to leafs, and c) DAG circuits

in different bases which we discussed earlier.

Learning theory on Boolean functions heavily relies on

the Fourier spectrum of such functions. If we encode bi-

nary values as {0, 1} → {1,−1}, any Boolean function

f(x) : {−1, 1}n → {−1, 1} can be written as f(x) =∑
S∈[n] f̂(S)χS(x) where χS(x) is the S-parity function that

computes the parity of bits of x whose indices are present in

S by multiplying them: χS(x) =
∏

i∈S xi. (Multiplication on

{−1, 1} corresponds to XOR on {0, 1}). f̂(S) are called the

Fourier coefficients of f . Based on the Fourier transform we

know the following results for n-input functions.

LEMMA 1 (Low-Degree-Algorithm (LDA)). For a collection
S , if f is ε/2-concentrated on S , meaning that

∑
S �∈S f̂2(S) ≤

ε/2, where S = {S : |S| ≤ k} then f can be learned in time
poly(nk, 1/ε) using random queries only.

LEMMA 2 (Kushilevitz-Mansour (KM)). If every f ∈ C is
ε/4-concentrated on a collection of M sets, then C can be
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learned in time poly(M, 1/ε, n) from membership queries.

Under the ε-concentration assumption since only a small

number of coefficients are significant, we can estimate them

one by one from random samples and reconstruct the function.

These coefficients can be estimated from the fact that for a

given index set S we have f̂(S) = Ex[f(x)χS(x)].
Several representation classes have been shown to have

concentrated Fourier spectrums including low depth circuits

shown by Linial, Mansour, and Nisan (LMN) [15]. In summary

we have the following lemmas regarding ε-approximation (ε-
learning) of Boolean functions.

LEMMA 3. Poly-size DNF formulae and poly-size DTs are ε-
learnable from random samples in nO(log(n/ε)). With member-
ship queries these are ε-learnable in poly(n, ε).

LEMMA 4. The class of functions computable by circuits of
size poly(n) and of depth d are ε-learnable from random

queries in time nO(log(n))d with ε = 1/poly(n).

Given the above results it is easy to see that AFS-OG with

exponential security (t ∈ Ω(Exp(n))) may not be possible for

large classes of functions.

PROPOSITION 3. If co ∈ {Cλ} where {Cλ} is a family of
circuits that are learnable with ε accuracy with δ success rate
from membership queries, the advantage of an attacker in the
AFS-OG game is at least δ.

THEOREM 1. The class of poly-sized DTs, poly-sized
CNF/DNF formulae, and poly-sized constant-depth circuits
(AC0/NC0), cannot be locked with AFS-OG security with
σ ∈ Ω(Exp(n)), i.e. exponentially small adversary advantage.

What practical circuits are in fact in this group? Unfortu-

nately many. Integer addition is in AC0. Parity functions are

not in AC0, however, there is an efficient algorithm for learning

them using membership queries [15]. The Espresso tool can

mine for minimal DNF representations of Boolean circuits.

Adders, multipliers, and comparators with 8-bit operands have

DNF sizes of just thousands of terms. Polynomial learning

of such DNF formulae can make locking them with AFS-

OG impossible. As we will see in the experimentation section

most combinational benchmarks have short depth and can be

approximated with significant accuracy from random samples.

In fact AFS-OG security is even more restrictive. We can

add to the above any circuit which has significantly unbalanced

output signal probabilities:

PROPOSITION 4. The advantage of an AFS-OG attacker is
lower bounded by a function of the unbalance of output signal
probabilities of co’s outputs themselves regardless of ce. If
∃m,

∣∣Pr
i∈I

[cmo (i) = 1]− 1
2

∣∣≥ Δm we have σ ≥ poly(Δm, 1/ε).

Proof. Assume that co is significantly unbalanced for output

m. The adversary makes q queries to output m. If for the

majority of the q queries cmo (xi) = 1, the adversary returns

1 for the remaining truth-table entries, and 0 otherwise. The

advantage of this attacker on output m is poly(Δm, 1/ε) better

than randomly guessing truth-table entries of co.

G. Best-Possible Approximation-Resilient Locking

We can relax the notion of AFS to avoid the negative results.

We define the notion of best-possible approximation-resiliency

by making two important modifications: 1) We define the

advantage relative to the “strongest learner” of the black-box

co. 2) It immediately follows that the strongest learner of co
must be smart enough to know that co cannot be larger and

deeper than ce. Knowledge of this bound on the depth and

size of the original circuit is quite significant. It reduces the

attacker’s hypothesis space from the set of all n-input Boolean

functions to the infinitely smaller set of functions implemented

by bounded-depth/size combinational circuits.
Consequently, best-possible approximation-resiliency means

that the best the attacker can do is to try to black-box-learn

co through input-output queries with the knowledge that co’s

size and depth are bounded to a known value. In other words,

the locked circuit ce, beyond what the attacker can extract

from the oracle through querying, reveals nothing new except

a bound on the depth and size of co.

DEFINITION 4 (Best-Possible Approximate Functional Secrecy

(BPAFS)). Consider the following adversary game. The adver-
sary A has ce and can make up to q chosen input queries to
co and has to return an ε-approximation of co. We say that a
cL scheme is (t, q, ε, σ)-BPAFS-OG secure if the advantage of
any A bounded by t operations is no more than σ better than
the advantage of any adversary A′ that tries to learn the black-
box co with a priori knowledge that depth(co) ≤ depth(ce)
and size(co) ≤ size(ce) through q queries. For oracle-less
attackers (t, ε, σ)-BPAFS-OL ≡ (t, 0, ε, σ)-BPAFS-OL.

Note that leaking of the depth and size of co through ce
directly ties the overhead of locking to its security. The smaller

the overhead of ce in terms of depth and size, the tighter the

bound on possible co solutions and a smaller hypothesis space

for the attacker. We get the following from Definition 4:

PROPOSITION 5. Without an oracle: BPAFS-OL ≡ AFS-OL.

PROPOSITION 6. If the advantage of an attacker in learning
co from queries is negligible, BPAFS-OG ≡ AFS-OG.

Proposition 6 is a rather important result. It shows that if

in fact co happens to be a circuit that is difficult to learn

using black-box learning, a BPAFS-OG-secure cL scheme

will achieve the much stronger AFS-OG notion of security.

Therefore, BPAFS-OG is really the best that we can expect

from locking in the presence of an oracle for a given co.

PROPOSITION 7. The BPAFS-OG attacker advantage σ is
lower bounded by a function of the disagreement probability
between ce and co. σ ≥ poly(

∣∣ Pr
i∈I,k∈K

[cme (i, k) �= cmo (i)]− 1
2

∣∣)

H. Oracle-less (OL) Security

Oracle-less attacks or removal attacks try to discern the value

of keys directly from the structure of ce without any access to

the oracle co [16], [17]. This is possible since certain locking

schemes leak key information through the structure of the

added key logic. e.g. if key-controlled XOR/XNOR gates are

inserted in the circuit, key-bits can be recovered based on
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(a) (b)

Fig. 3: (a) EFS-security can be guaranteed by flipping the output of co on p input patterns and correcting it using a conditional-look-up
function implemented with TCAM logic with z ≥ p entries. (b) Universal circuit with depth d and width w. The blue wires are key-variables,
and the red wires are input-outputs.

whether the key-gate is an XOR or an XNOR. We briefly

discuss a couple of notes regarding BPAFS-OL herein.

PROPOSITION 8 (Structural Disassociation). BPAFS-OL-
security implies security regardless of the particular structure
of ce. i.e. if a scheme satisfies BPAFS-OL, the advantage of
the adversary A which has access to ce is negligibly different
than the advantage of any other adversary A′ that has access
to a randomly chosen equivalent circuit implementing ce.

This condition relates somewhat to the notion of indis-

tinguishability obfuscation (iO) which is an operator that

makes iO(c1) indistinguishable from iO(c2) when c1 and c2
implement the same function [9]. One may be tempted to use

iO(ce) to achieve OL-security. However, a stronger condition

that locking needs to satisfy is that it should not leak the key

through the functionality of ce either. i.e. if an iO obfuscator

is used to mangle ce, it is still possible that iO(ce) leaks

information about co to the attacker through its functionality4.

PROPOSITION 9 (Functional Disassociation). If for a cL
scheme the distributions {ce} and {cer} are indistinguishable
in less than t operations with σ success rate, where cer is the
locking of a random circuit cor which has the same size and
depth as co, then the cL scheme is (t, ε, σ)-BPAFS-OL.

The above functional disassociation condition appears to be

stronger than BPAFS-OL meaning that it implies BPAFS-OL
but the reverse is not obvious.

III. CANDIDATE CONSTRUCTIONS

In this section we first show how EFS-OG can be achieved. We

then present a candidate construction that satisfies BPAFS-OG
with polynomial overhead.

A. EFS Security

Subsequent to the SAT attack an array of methods were

proposed to thwart the attack using “point-functions” [18].

4iO is a much hyped topic in theoretical cryptography. Candidate provably
secure constructions of iO for large programs/circuits have impractical
overhead. For smaller circuits the Reduced-Ordered-BDD of the circuit
can be used as its perfect iO. Careful multiple-rounds of random re-
synthesis/restructuring/retiming may achieve a heuristic iO as well. One
can think of iO as structural randomization/canonicalization. Our locking
constructions in this paper do not rely on iO at all.

Point-function Px∗(x) produces 1 on x = x∗ and 0 on all

other inputs. These blocks can be added to co to flip its output

for a particular set of input patterns. This can help create

schemes where any oracle-guided attack has to query the entire

input-space to resolve the key. However, it was shown in [19]

how these blocks can be found and removed from the circuit

allowing exact-recovery of co. Yasin et al. [20] were the first

to propose removal-resilient locking/camouflaging schemes by

first flipping co’s output itself, and then using point-functions

to “correct” the output on those inputs. We show how this

technique can satisfy EFS-OG security if care is taken in

implementing it.

THEOREM 2. The following scheme is EFS-OG secure. The
original circuit co is flipped on a set of input patterns P
where |P| = p. The conditional-lookup function P (x, k =
〈{k1, k2, ..., kz}, {kb1, kb2, ..., kbz}〉) where z ≥ p is imple-
mented which outputs 1 if ∃ki s.t x = ki and kbi = 1. the
scheme then produces ce(i, k) ← cflipo (i)⊕ P (i, k).

In this scheme ki represents a set of z secret patterns, and

kbi decide which ones are active in the comparison. The kbis
allow the scheme to leak no more than a bound on the number

of flipped input patterns z ≥ p. This is shown in Figure 3a.

The lookup function can be implemented using TCAM logic

with the kbi signals masking each row.

Care must be taken in order to make sure the attacker cannot

discern the location of the flipped patterns from the structure

or functionality of cflipo . If comparators are used to perform

the inversions and their structures is discernible from the rest

of the circuit the flipped patterns can be leaked. Note that if

the attacker suspects a location x to be in the set P , he can

test x’s membership by comparing cflipo (x) and co(x). The set

of input patterns P can be moved around to find a location

that allows the flip-comparators to merge with other logic.

Yasin et al. in [20] and Shamsi et al. in [18] tried to cover a

super-linear-size set P using functions h(i, k) to increase the

error rate. Shamsi et al. used a diversified-tree, and Yasin et al.

used a hamming-distance block. Any such attempt however to

produce a super-linear-sized set P with a function that is not

one-way and has an statistically correlated onset risks leaking
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the patterns in P to the attacker.

B. BPAFS from Hypothesis Matching

Our construction for a BPAFS-OG secure cL scheme directly

follows from the definition of BPAFS-OG. In the BPAFS
game, we leaked to the adversary an upper bound on the size

and depth of co. Given this information the hypothesis space

H for the adversary that does not know anything else about

co, is the set of all circuits of size ≤ size(ce) and depth

≤ depth(ce). If we were able to construct a circuit that can

be programmed to implement this entire hypothesis space or

a superset of it, the advantage of the attacker in attacking

such a hypothesis is 0 in the BPAFS-OG game. We refer to

this technique as Hypothesis Matching. This is because we are

matching the strongest hypothesis that the attacker has on the

original circuit co, with a circuit that implements at least a

superset of all functions in that hypothesis space.

LEMMA 5. (Hypothesis Matching) Let the strongest hypothesis
of an attacker on co before querying it be H and C =
{ce(i, k)|k ∈ K}. If C is not perversely leaking co

5, and if
H ⊆ C, the advantage of this attacker in the BPAFS-OG game
is zero.

Does such a ce exist? There are in fact many polynomially

sized circuits that can be programmed to implement D where

D = {set of circuits of size ≤ s and depth ≤ d}.

LEMMA 6 ((d, s)-Universal Circuit). There exists a circuit
u(d,s)(i, k) over n input wires, and l ≤ s log(s+n) key-inputs
for which C ⊇ D, where C = {u(d,s)(i, k)|k ∈ K} and
D = {set of circuits of size ≤ s and depth ≤ d}.

Proof. We prove this by constructing a u(d,s)(i, k). Without

loss of generality we assume the DAG circuit basis to be the

set of all 2-input Boolean functions. Per Figure 3b We start by

placing the n input wires down on the circuit. We then add the

layer g1 of 4-key-bit LUTs. We then connect the 2|g1| inputs

of this layer to all the n inputs through n-to-1 key-controlled

multiplexers with log(n) key-bits. We continue adding layers

in this fashion except that for any layer after g1 we not only

connect the gates in gi to gi−1 using MUXs, we also connect

them to all previous layers all the way down to the input layer

g0. The number of key-bits in this circuit is:

l ∈ O
(
|g1| log(n) + |g2| log(n+ |g1|)

+|g3| log(n+|g1|+|g2|)+...+|gd| log(n+|g1|+...+|gd−1|)
)

≤ O(d|gd| log(d|gd|+ n)) ≤ O(d
s

d
log(d

s

d
+ n))

≤ O(s log(s+ n))

THEOREM 3. The cL scheme that given n-input co outputs
the n-input universal circuit u(d,s) where d ≥ depth(co) and
s ≥ size(co) is (∞, 2n, ε, 0)-BPAFS-OG secure.

5This bars the case where the excess size of C with respect to H, or the
very encoding of C is used perversely to leak information about co.

Note that the above scheme is BPAFS-OL secure as well.

OL-security follows from BPAFS-OG, however, an intuitive

explanation for this is that we did not use any information

from co to produce the locked circuit u(d,s) other than its

depth and size, which are already known to the attacker.

C. Efficiency

While the above scheme is provably secure with polynomial

overhead, it does not mean that it is practical. It results in a

quadratic blow-up in the size of the DAG circuit. There are

however some positive notes here. First, the proposed scheme

perfectly matches the attacker hypothesis. Any deviation from

the fully connected network of the universal circuit will shrink

its hypothesis size with a rate that is not at all obvious

from a theoretical stand-point. Hence in our experimentation

we reduce the connectivity and profile changes in the attack

success rate and runtime.

Second, the universal circuit proposed here is dominated by

key-controlled MUX logic. Even though MUX gates require

several other gates to implement in the complexity theoretic

DAG model, in reality, the MUX logic simply means that

the interconnect information is missing. In IC camouflaging

this can be implemented with small metal-to-metal cam-

ouflaged vias and extra wiring. For split-manufacturing the

very removal of top layers creates the interconnect ambiguity

present in u(d,s). For logic locking, similar to IC camouflaging

programmable vias can be used for improved overhead as they

do not consume transistor area. However, the vias need to be

programmed which requires additional programming circuitry.

Shamsi et al. proposed a light-weight cross-bar programming

architecture for this task [21]. Furthermore, the universal

circuit resembles FPGA logic which can be embedded in an

ASIC for locking.

D. Sequential Circuit Locking

It is possible to extend the framework described earlier to

sequential circuits. We can allow the cL scheme to add state-

elements to the sequential circuit co. Security is defined similar

to the combinational locking problem, except ε-approximation

is defined over the space of all possible input “sequences”

rather than input patterns.

As for learning theory results, some FSMs can be modeled

as Diterministic-Finite-Automata (DFA)s. We know that learn-

ing DFAs with membership queries is possible in polynomial

time [22], however, the learning complexity grows with the

number of possible input patterns (i.e. the size of the input

alphabet in the DFA) which is exponential for FSM circuits

[23]. It is possible to unroll the sequential circuit up to some

number of rounds and apply the combinational model to it. The

universal circuit for sequential circuits can be constructed as

well by replacing the next-state and output logic with universal

circuits. We leave an extended analysis of this to future work.

IV. EXPERIMENTS

We now present our experimentation results. In our experi-

ments we used the SAT attack algorithm [7] implemented in

an in-house developed C++ framework optimized with O3.
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TABLE I: ISCAS and MCNC benchmark set

bench #ins #outs #gates bench #ins #outs #gates

c432 36 7 160 i7 199 67 1315
c499 41 32 202 c3540 50 22 1669

i4 192 6 338 k2 46 45 1815
c880 60 26 383 dalu 75 16 2298
c1355 41 32 546 c5315 178 123 2307
apex2 39 3 610 i8 133 81 2464
c1908 33 25 880 c7552 206 107 3512

i9 88 63 1035 seq 41 35 3519
ex5 8 63 1055 ex1010 10 10 5066

c2670 157 64 1193 apex4 10 19 5360
i7 199 67 1315 des 256 245 6473
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Fig. 4: Depth profile of the benchmark circuit set. Most circuits have a
short depth and a cone-shaped topology, meaning that the percentage
of gates in each layer drops as we get closer to the output.

We used the Glucose SAT-solver without its simplification

routines. Our SAT attack implementation keeps track of a most

recent valid key, so that in case the time deadline arrives,

the attack will return an intermediate key before terminating.

The key satisfies all input-output pairs queried so far. This

is somewhat similar to AppSAT’s intermediate key extraction

[7]. In addition to the SAT attack we used the hill climbing

attack from [24]. The hill climbing attack is based on using

a simulated-annealing algorithm to flip key-bits to optimize

for an error metric calculated from randomly querying ce and

comparing it to co. The hill climbing attack is surprisingly

successful in learning universal circuits when the circuit is

too large for SAT attacks. In addition to the C++ framework,

we used the scikit framework in python for some learning

subroutines. All tests were run on a server with 96 AMD

EPYC cores at 1.9Ghz with 256 GB of RAM running Linux.
We used a set of ISCAS and MCNC benchmark circuits

from [6]. The benchmark circuits were resynthesized using

ABC to a toy library with 12 gates. The statistics of these

benchmark circuits can be seen in Table I.

A. Oracle Learnability

We first perform black-box learning of co to get an idea

of the learnability rate of different benchmark circuits. We

used two decision-tree learning algorithms ID3 and CART

along with a neural network (NN) using default parameters

from scikit (e.g. hidden layer size: 100). We configured

the learning algorithms as a binary classification problem and

tried to learn the functionality of each output bit separate

of the other bits. We used 1000 random input patterns with

80% dedicated to training and the other 20% to testing. The

recovered accuracy for different benchmark circuits is shown

in Figure 5 where each point is the accuracy of a different

output of the circuit. It is quite common for some output bits

to be learned with much better accuracy than others. As can

be seen, the majority of outputs of the benchmark circuits can

be learned with accuracy significantly above 50%.

While the main appraoch for proving learnability of Boolean

functions is Fourier-based methods, in practice, more modern

learning algorithms such as decision-trees and neural networks

will outperform a direct implementation of the LDA or KM

routines [25] which is what we observed in our experimenta-

tion as well. We defer more in-depth practical utilization of

Fourier schemes to future work.

In addition, note that decision-tree and neural network

learning methods do not return a small and fast Boolean

circuit. Oliveira [26] proposed various algorithms for learning

Boolean circuits directly which he showed to outperform ID3

and CART and return compact circuit representations. As we

will discuss shortly, a deobfuscation attack (hill climbing or

SAT attack) on the universal circuit with respect to an oracle,

is in itself a learning algorithm that returns a Boolean circuit.

If the SAT attack on a universal circuit ce that includes co
succeeds, co is recovered from oracle queries alone.

B. The Universal Circuit

Before describing our universal circuit model it is good to

look at the depth profile of the benchmark circuit set that we

used represented in Figure 4 as gate-percentage per layer. As

can be seen these circuits all have a somewhat shallow and

cone-like structure meaning that the number of gates in each

layer drop as we get closer to the output. This fact can be

used in the construction of the universal circuit to reduce its

complexity by dropping the layer width as we get closer to

the output creating a cone-like structure.

Given the above, our universal circuits are characterized

by the following parameters: 1) number of inputs n and

outputs m; 2) width of layers w; 3) depth d; 4) back-step

b, which is an integer that decides how many of the layers

before gi are to be part of the candidate set for connecting

to gi through MUXs. For back-step 1, gi will only connect

to wires in its previous layer and hence the candidate set

is Si = {gi−1}. A full back-step means that each gi can

be connected to all previous layers, Si = {g0, ..., gi−1}. 5)

Connectivity cn. Once back-step decides the set of candidates

for the MUX gates, connectivity which is a value between

0 and 1 decides the proportion of Si that will be selected

for routing through MUXs. It is possible to pick from Si

randomly, however, to avoid disconnected networks we used a

window selection technique that connects each wire wj ∈ gi to

{w′
j , ..., w

′
(j+cn∗|Si|) mod |Si|} ⊆ Si. We specify this universal

circuit with univ(n,m,w, d, b, cn).

C. SAT Attacks

We performed 1728 SAT attacks on u(d,s)(i, k)-co(i) pairs

by sweeping the above parameters according to the x-axes of

the plots in Figure 6. The original circuit co in these tests

was generated by randomly assigning a key to the universal

circuit and resynthesizing the circuit and picking only cos that
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are non-constant. The time-out for the attack was set to 30

minutes to allow for all the tests to complete. In Figure 6

the 1728 data points are viewed along different dimensions to

analyze the effect of different parameters. The bars represent

the percentage of tests in each category that reached time-out.
As can be seen from the data, connectivity and back-step

generally increase the complexity of the SAT attack, however,

not by a great deal. This signals that we may be able to

move away from the fully connected universal circuit without

much loss in terms of practical security. Depth seems to

have a particularly significant effect on attack complexity. An

interesting note is that each blue cross in Figure 6 shows a

circuit co which can be learned from oracle queries with only

knowledge of a bound on its size and depth eliminating the

need for knowing ce all together.

D. Hill Climbing

The size of the universal circuit can get very large even with

moderate parameters. This quickly causes the SAT solver in

the SAT attack to slow down significantly. On the other hand,

the hill climbing attack has a constant memory footprint and

is much more scalable for larger circuits. Figure 7 shows a

comparison of the hill climbing attack versus the SAT attack

on two different universal circuits while randomly varying only

co. Each test was run 3 times for 30 minutes and the best

results were selected.

As can be seen from Figure 7 for the larger universal circuit

where the SAT attack fails, the success rate of the attack

heavily varies with co. This again reiterates the message of this

paper that OG-security is heavily dependant on co itself. The

universal circuit simply ensures that the learning rate of the

given ce is not better than directly learning co. It can be seen

that co circuits that are difficult to learn under the hill climbing

attack were also consistently difficult to resolve in different

runs of the SAT attack indicating a genuine relation between

the original circuit co and the attack complexity regardless of

the locked circuit ce.

We also used the hill climbing attack to learn the benchmark

circuits in Figure 5 from universal circuits. The red triangles

represent the best accuracy results obtained by hill climbing on

universal circuits for each output. It can be seen that almost no

hill climbing attack outperforms machine learning schemes on

the black-box. This is consistent with the BPAFS-OG criteria
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that states that learning the universal circuit ce should not be

significantly better than black-box learning of co.

V. CONCLUSION

In this paper we presented a formal approach to the problem

of netlist disambiguation. We defined the problem of circuit

locking and different notions of security. We showed that

approximation-resiliency under oracle-guided attacks depends

partly on the original circuit co itself. We presented secure con-

structions for exact-recovery resiliency, and a relaxed notion of

best-possible approximation-resiliency using universal circuits.

Our experimental analysis showed the relation between various

parameters of the secure constructions and practical secu-

rity. Some open problems which remain are: 1) learnability

of sequential circuits under oracle-guided attacks, 2) best-

possible approximation-resiliency with linear overhead rather

than poly-log, 3) utilization of Fourier spectrum techniques,

and 4) automatically detecting which co circuits can be locked

with smaller overhead and more security.
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