
IcySAT: Improved SAT-based Attacks on Cyclic Locked Circuits

Kaveh Shamsi∗, David Z. Pan†, and Yier Jin∗∗Department of Electrical and Computer Engineering, University of Florida
†Department of Electrical and Computer Engineering, University of Texas at Austin

kshamsi@ufl.edu, dpan@ece.utexas.edu, yier.jin@ece.ufl.edu

Abstract—“Cyclic” circuit locking/camouflaging is a recently proposed
direction in logic obfuscation for thwarting foundry and end-user reverse
engineering. As opposed to traditional schemes, these techniques create
cycles in the obfuscated circuit in a way that confuses the attacker but
does not disrupt the combinational nature of the circuit. While these
schemes can thwart the baseline SAT-based attack, the CycSAT attack
was proposed recently to break these schemes through a preprocessing
step that builds a Boolean condition to avoid cyclic solutions/keys during
the attack. However, follow-up work has suggested that extracting these
conditions requires enumerating all cycles in the circuit, or that instead
of relying on these conditions preemptively, cyclic solutions must be
banned individually on the fly. In this paper we present new algorithms
for performing SAT-based attacks on cyclic circuits. We first propose
an algorithm that can produce non-cyclic conditions in polynomial time
with respect to the size of the circuit, avoiding the potentially exponential
runtime of explicit key-banning or cycle enumeration. We then take
a deeper look at the problem, discussing some of the fundamental
limitations of extracting precise non-cyclic conditions and propose a more
complex but complete procedure for cyclic deobfuscation. We evaluate
our attacks on densely cyclic obfuscated benchmark circuits.

I. INTRODUCTION

A major part of today’s semiconductor industry operates under the

fabless business model in which one party performs the design

and verification of the IC while another party, typically in another

country, manufactures the design. This means that the physical design

of an IC including all non-programmable features of the chip are

revealed to a potentially untrusted foundry. This has raised several

security concerns including the threat of malicious modification of

the design, Intellectual Property (IP) theft, and overproduction. Not

only is malicious modification of large designs easier than anticipated,

due to scaling and process variation, it is becoming more and more

difficult to detect such modifications post fabrication. In addition to

the threat from an untrusted foundry, end-users can reverse engineer

fabricated ICs through depackaging, delayering and imaging the IC

in an increasingly automated fashion.

Logic locking, IC camouflaging, and split-manufacturing are three

main techniques for increasing supply chain security by partially

hiding the design from the foundry or end-users. Locking is based

on inserting programmability into the circuit such that post fabri-

cation a configuration of the programmable elements with a secret

bitstream/key is necessary to operate the IC correctly. This hides

from the foundry the complete functionality of the circuit and can

protect against end-user attackers as well, if the programmable device

technology is tamper-resistant. IC camouflaging is based on inserting

nano-device structures in the circuit that are difficult to recognize

by end-user attackers through microscopy-based reverse engineering

while providing no protection against an untrusted foundry. Split-

manufacturing is based on fabricating upper metal layers or another

part of the design in a trusted foundry, hiding partly design informa-

tion from the untrusted foundry.

All three of the above design-hiding techniques are difficult to

secure with low overhead when an attacker has access to a func-

tional/unlocked IC. The attacker can use this functional IC as an

oracle to extract correct input-output pairs which can be used to

resolve the ambiguity in the netlist. The most powerful and systematic

of such “oracle-guided” attacks are the SAT attacks [1], [2] which

use SAT solver calls to adaptively find input patterns to query on the

oracle and incrementally deobfuscate the netlist.

There has been several constructions for locking/camouflaging that

thwart the SAT attack by exponentially increasing the minimum

number of queries required to learn the circuit [3], [4]. This is done

by ensuring that each query can help disqualify only an exponentially

small portion of the hypothesis space of the attacker. However,

these schemes inevitably result in a low error-rate meaning that the

attacker can approximate the functionality of the original circuit with

approximation attacks [5], [6].

Another branch of research on SAT-resilient locking/camouflaging

was initiated by Shamsi et al. [7] by deliberately adding dummy

cycles to combinational directed-acyclic-graph (DAG)-circuits for the

purpose of obfuscation. These added cycles can cause problems for

the baseline SAT attack. However, Zhou et al. [8] proposed a novel

preprocessing technique that can allow the SAT attack to deobfuscate

cyclic circuits. The preprocessing step is based on extracting a

condition from the obfuscated circuit that ensures that the attack

search only operates within the subset of the solution space that

produces acyclic circuits. This condition was called the non-cyclic

(NC) condition.

It was later observed that the method described in [8] for extracting

NC conditions may require a traversal of all cycles in the circuit

[9], [10] to construct with effective precision. This limitation was

exploited in several cyclic protection schemes to thwart oracle-guided

attacks [9], [10]. The BeSAT attack was then proposed in [11] which

operates by detecting cyclic solutions as they arrive during the attack

and explicitly banning them from the SAT solver.

Cyclic deobfuscation is not only important to the analysis of cyclic

locking/camouflaging schemes, it is critical to analyzing the security

of any scenario where an attacker wants to fully reconstruct unknown

circuit interconnects through input-output queries. For instance, the

security of split-manufacturing was assessed by formulating a cyclic

deobfuscation problem in [12] but solved using the existing inefficient

cycle enumeration approach. In this paper we improve upon the state-

of-art in cyclic deobfuscation. We specifically deliver the following

contributions:

• We first show how explicitly banning cyclic keys as used in

BeSAT can easily end up performing exponential computation

on small and simple cyclic circuits.

• We present a technique for extracting non-cyclic conditions with

time and space complexity O(|W |.S) where W is a feedback-

arc-set, and S is the size of the obfuscated circuit. We show

how this technique avoids the potentially exponential runtime

of BeSAT and cycle enumeration by performing the attack on

densely cyclic benchmark circuits.

• We present a novel study of the deeper limitations of non-cyclic

conditions including the impreciseness of sensitivity analysis

which is a main part of these attacks, plus the case where the

original circuit itself is cyclic (cyclic+cyclic obfuscation). To ad-

dress these limitations, we present a more complex but complete

cyclic deobfuscation procedure based on circuit unrolling.

978-1-7281-2350-9/19/$31.00 ©2019 IEEE

Authorized licensed use limited to: University of Florida. Downloaded on August 26,2020 at 21:56:22 UTC from IEEE Xplore.  Restrictions apply. 



The paper is organized as follows Section II presents prelimi-

naries, Section III presents our efficient NC condition extraction

algorithm. Section IV presents discussions and algorithms beyond

NC conditions. Section V presents experimental results, and Section

VI concludes the paper.

II. PRELIMINARIES

A. Oracle-Guided Attacks
Logic locking can be modeled as inserting additional programmable

inputs called key-inputs into the circuit. Formally this can be modeled

as taking the original circuit co : I → O where I = {0, 1}n, O =
{0, 1}m and transforming it to a locked/obfuscated circuit ce : I ×
K → O where K = {0, 1}l is the key-space and there exists a

correct key k∗ ∈ K∗ ⊂ K for which ce(i, k∗) = co(i) for all i ∈ I .

IC camouflaging can be modeled with this formalization as well by

encoding all the ambiguity in the netlist with additional key-variables.

It can be shown that for digital ambiguity this should be possible with

a polynomial number of key-variables. Split-manufacturing can also

be modeled this way by replacing the missing interconnections of

n nets with a network of n-input multiplexer (MUX) gates that are

controlled by log(n) number of unknown key-bits [12].

With respect to the above formalism, the oracle-guided attack

model assumes the attacker has white-box access to the obfuscated

circuit ce, and black-box access to the oracle circuit co that can be

queried with arbitrary x to obtain co(x). The SAT attack [1], [2] op-

erates under this model. It begins by forming a mitter circuit/formula

M ≡ (ce(x, k1) �= ce(x, k2)). The formula is satisfied with x̂, k̂1,

k̂2 using a SAT solver. x̂ which is referred to as a discriminating-

input-pattern (DIP) is queried on the oracle and the observation from

the output is added back to the SAT solver as a new constraint.

The procedure stops when the mitter+constraints can no longer be

satisfied in which case the constraints should return a correct key.

The baseline SAT attack can be seen in Algorithm 1.

Algorithm 1 With oracle access to co and the circuit ce return a correct
key k∗ ∈ K∗.

1: function OGSATATTACK(ce, co as black-box)
2: F ← true, M ← ce(x, k1) �= ce(x, k2)

3: while F ∧M is solvable do
4: Solve F ∧M with x̂, k̂1, k̂2
5: ŷ ← co(x̂)

6: F ← F ∧ (ce(x̂, k1) = ŷ) ∧ (ce(x̂, k2) = ŷ)

7: satisfy F with k̂1 and k̂2
8: return k̂1 as a correct key k∗

B. Baseline SAT Attacks on Cyclic Circuits
Cyclic obfuscation was first proposed in [7] in which N paths of

length L are found in the circuit and joined by key-controlled MUX

gates. Hence, a correct key will open up the feedback edges and

return the original acyclic circuit.

An example of cyclic locking can be seen in Figure 1. If the

baseline SAT attack is run on this circuit pair, the cyclic relation

ce(x, k) will be directly added to the SAT solver. If the attack is

lucky, the SAT solver will never land on a cyclic key and the SAT

attack will conclude. With high probability however, the attack can

run into issues. For instance, if (k̂2, k̂3) = (1, 1), the input x0 gets

disconnected from the output, and the output becomes dependent

on the initial state of the wire e. At this point the solver can keep

satisfying the mitter condition M in an infinite loop just by changing

the initial state of e rather than changing the input x0 and learning

new information about the key.

x0x1 O
(a) k1

k2 k3
X0

0
1

X1 0
1

O

(b)

Fig. 1: (a) The original acyclic circuit. (b) Cyclic locking with three added
key bits.

C. The Cyclic SAT Attack (CycSAT)
The “Structural”-CycSAT attack [8] which we will simply call

CycSAT here, is for deobfuscating cyclic circuits where the original

circuit itself is acyclic. The attack is based on placing a condition on

the key banning the solver from landing on cyclic keys. Extracting

this condition is the critical part of the attack. In the CycSAT attack,

first a feedback-arc-set W = {w0, w1, ...., wp} is discovered which

can be done with a simple depth-first-search (DFS) starting from

inputs. A feedback-arc-set is any set of edges in a directed cyclic

graph that if opened will turn the graph acyclic. These wires are

then opened into an input wi and an output w′
i. The NC condition

is defined as
∧

i∈0..p F (w′
i, wi) where F (w′

i, wi) is the condition on

the key such that there is no structural path from wi leading to w′
i.

The approach for constructing F (w′
i, wi) was to recursively compute

F (w′
i, wi) =

∧
l∈NK(w′

i)
F (w′

i, l)∨ bk(l, wi) where NK(w′
i) is the

non-key fanins of the wire w′
i and bk(l, wi) is the condition on the

key that will block wi from affecting l.

D. Behavioral Cyclic SAT Attack (BeSAT)
A critical question when extracting the NC condition is that when

computing F (w′
i, wi), the logic cone that connects wi and w′

i may

include other feedback edges and can even itself be cyclic. When

these edges are encountered during the traversal, if we assume that

they are open, then certain cycles may not be blocked by the NC

condition [9]. For instance in Figure 1b during the backward traversal

for feedback c, if we assume that e is already open, the NC condition

will allow the cyclic solution (k2, k3) = (1, 1).
BeSAT [11] overcomes this issue by analyzing in each iteration of

the SAT attack if the keys k̂1 and k̂2 create cyclic circuits. This is

done by first checking if the output of two copies of the circuit with

the same inputs and keys, ce1(x, k̂1) and ce2(x, k̂1), can be made

different. If true the circuit has internal floating nodes and is cyclic.

Second, a ternary simulation test from Malik in [13] is used to test

for cyclicness of the keys. If a key is deemed cyclic, it is explicitly

banned from the SAT solver by adding the condition k �= k̂cyc.

III. IMPROVED CYCLIC SAT ATTACKS (ICYSAT-I)

In this section we focus on the case where the original circuit is not

cyclic, i.e. feedback paths can be opened by setting the correct key.

A. On the Limitations of BeSAT
We begin first by showing how BeSAT’s approach of explicit key-

banning can result in exponential runtime and exponential size

formulae given small cyclic circuits. A simple way to cause BeSAT

(or any attack that is based on individual key exclusion) to perform

exponential work, is to integrate some comparator logic into the key.

For instance, take a feedback MUX gate m(k0, fb, x1) that will select

the feedback signal fb if k0 = 0. The cyclic solution for a circuit

with one such feedback multiplexer occurs only when k0 = 0 and

hence BeSAT can find the correct key in one iteration. However, if

we replace k0 in the MUX gate with t0 = P (kv, k
∗
v) where kv is a

v-element vector and P is a comparator so that t0 is only 1 when

kv = k∗
v , now there are 2v − 1 possible key patterns that result in a

Authorized licensed use limited to: University of Florida. Downloaded on August 26,2020 at 21:56:22 UTC from IEEE Xplore.  Restrictions apply. 



x0
x1 O

(a)

k0

x1
O

k1
k2
k3

(b) x0
Fig. 2: (a) The original acyclic circuit. (b) Cyclicly locked circuit which
will take BeSAT 24−1 iterations to resolve in the worst-case even though
the non-cyclic key can be inferred from the structure.

k1

k2k3
X0

X1 0
1

O

0
1

Fig. 3: Circuit in Figure 1b opened and rearranged to analyze the
dependence of the feedback edge c.

cyclic circuit and the SAT solver in the worst case will pick all of

these cyclic keys before landing on the acyclic one k∗
v , even though

k∗
v is hard-coded into the circuit’s logic.

The above example relies on using a key-comparator. This however

is insecure from the perspective of functional security. Functional

secrecy in logic locking/camouflaging demands that the obfuscated

circuit’s functionality be difficult to learn rather than the key per se.

From this standpoint, any logic cone that operates solely on key-

inputs can be removed from the circuit and replaced with a single

new key-variable at the tip of the cone. The circuit locking shown

in Figure 2 however, shows how the same concept of “exponentially

many cyclic keys” can be implemented without key-exclusive logic

that will spell trouble for the BeSAT attack. In the circuit in Figure

2b each of the feedback paths need to be broken up by setting the

corresponding keys to a particular value. Note that while BeSAT can

take up to 24−1 key-banning iterations to find the non-cyclic key, the

original CycSAT attack, as part of computing the NC condition will

in fact discover the particular key pattern that results in an acyclic

circuit, which happens to also be the overall correct key.

While the two examples discussed above were contrived to create

many non-cyclic keys, if we expand our scenario to a case with more

feedback arcs, the possibility of exponential key-banning increases

naturally. When studying a particular opened feedback wire wi, we

are interested in the logic cone that connects wi to w′
i which we can

represent with w′
i = gi(wi, x, k) where gi is a function of primary

inputs x and key inputs k as well as wi. It is easy to see that the

worst-case key-banning iteration complexity of BeSAT is equal to the

number of vectors of k for which w′
i is dependent on wi which is

an exponential function of the key-length for randomly selected gi.
Note that the DIP-complexity of BeSAT will be similar to CycSAT

and baseline SAT attack counterparts as demonstrated in [11].

B. On the Limitations of CycSAT
We now return our focus to the original (structural)-CycSAT attack

and its limitation. Consider the circuit in Figure 1b. The first step

in the CycSAT attack is to find a feedback-arc-set. One such set is

{c}. Next is to extract a condition so that c does not affect c′. The

circuit rearranged with opened c can be seen in Figure 3. As can be

seen in this case, the cone c′ = gc(c, x, k) is in fact acyclic. Hence,

CycSAT can easily extract a non-cyclic condition from this cone by

traversing from c′ to c through different paths in the circuit.

Now imagine if we pick the feedback-arc-set {c, e}. This is similar

to the previous case except now when analyzing F (c′, c), the cone

c′ = gc(c, x, k) includes the edge e which is also a member of

(a) (b)
Fig. 4: (a) A single cycle. (b) Two intertwined loops show the impossi-
bility of avoiding interdependence among feedback-arcs.

the feedback-arc-set. We are now faced with a dilemma. When

constructing F (c′, c) should we open the edge e into e and e′

and use F (e′, e)? If yes, what should be used as F (e′, e) when

building F (c′, c)? Furthermore, whatever dilemma we are facing

when building F (c′, c) with respect to F (e′, e), we will face the

same issue when later building F (e′, e) since F (c′, c) depends on

F (e′, e) and F (e′, e) depends on F (c′, c).
The above interdependency between the feedback-arc break con-

ditions can be shown on the graph in Figure 4a. Here we assume

there is a single cycle in the circuit. If we break this circuit at e1
(the feedback-arc-set {e1}) we can compute the NC condition by

traversing the cycle easily. However, since in the CycSAT attack any

feedback-arc-set can be selected, we can add e3 to the feedback-

arc-set, in which case there will be an interdependency between

F (e′1, e1) and F (e′3, e3). This in fact can be exacerbated to an n-

way interdependency when using a feedback-arc-set with n edges on

a single cycle.

One may be tempted to think that picking a minimum feedback-

arc-set or a more judiciously selected arc-set can alleviate the

interpendence problem. However, as soon as the graph becomes

slightly complex, it is easy to see that no selection of edges will

help avoid this problem. Take the graph in Figure 4b. Here if we

break either one of the outer rings, we still need to break e6 or e4 to

break all cycles in which case there will be interdependency among

them. This simple example is in fact a counter-example that can help

prove the following theorem:

THEOREM 1. It is not always possible in a directed graph G(E, V )
to find a feedback-arc-set W where for all w ∈ W all paths in
G′(E − {w}, V ) from w.v1 to w.v2 avoid all edges in W − {w}.

C. Polynomial-Time Construction of Non-Cyclic Conditions
We begin presenting our algorithm by first focusing on extracting NC

conditions for an edge w′
i = gi(wi, x, k) when gi is acyclic and void

of other feedback arcs. For this task, CycSAT proposes recursively

computing the following:

F (w′
i, wi) =

∧

l∈NK(w′
i)

F (w′
i, l) ∨ bk(l, wi)

where bk(l, wi) is the condition on the key that l does not depend

on wi. A direct implementation of this recursive procedure will end

up traversing all the paths in the cone gi starting from the tip of

the cone and emitting clauses on k for each of the traversed paths.

This can result in a blow-up of added clauses which was discussed

in [8] and the proposed solution was to add intermediate variables to

reduce the clause count. While it was proven in [8] how generating a

polynomial condition is possible, a systematic approach for how this

is integrated into the algorithm was not provided.

In this paper, we create the independence condition for cone gi by

building a circuit nci that represents the F (w′
i, wi) condition and can

be converted to CNF. Each wire in nci correspond to a wire of gi.
The gates in nci are constructed by transforming the corresponding

Authorized licensed use limited to: University of Florida. Downloaded on August 26,2020 at 21:56:22 UTC from IEEE Xplore.  Restrictions apply. 



k1

k2 k3
X0

0
1

X1 0
1

O

’

’
Fig. 5: Circuit in Figure 1b when building the NC condition for feedback
set {c, e} with the assumption that other feedback arcs are closed.

gates in gi based on dependency rules in addition to a partition on

the inputs of the gates specifying which signals are “blockers”, and

which are “blockees”. For instance, for an AND gate AND(k0, x0),
if k0 is a blocker and x0 is a blockee, the condition on the blocker k0
that the output of the gate does not depend on the blockee input x0,

can be represented by replacing the gate with OR(NOT(k0), x0).
The output of this gate will be 1 (meaning it does not depend on wi)

if either the blocker k0 is 0 so that it kills x0, or that x0 is 1 (non-wi-

dependent) in the first place. If all inputs are blockers the gate is not

changed. If all inputs are blockees, the output is the AND of them (if

one of them is 0/wi-dependent then the output is 0/wi-dependent).

These transformations can be listed for the various n-input gates and

used to build nci from gi. Note that this corresponds to a dynamic-

programming (DP)-based implementation of the recursive procedure

in [8] with a time/formula-size complexity of O(|gi|) rather than

O(#paths(gi)). Figure 6b shows an example. Line 13 in Algorithm

2 performs this transformation.

The next challenge is dealing with the feedback-arc interdepen-

dency and the cyclicness of some gis. We overcome this issue

by taking the conservative approach and assuming that no other

feedback-arcs are open when analyzing a particular arc. When

building the independence condition F (w′
i, wi) given the cone gi,

under the assumption that other feedback-arcs are not open, there are

a few possibilities: 1) The cone gi contains no other feedback-arcs

and is hence acyclic, in which case we can easily extract nci. 2)

The cone gi includes other feedback-arcs but is not cyclic, in which

case we proceed similar to case 1. 3) The cone gi includes other

feedback-arcs and is cyclic itself. In this case we similarly extract an

nci circuit from gi even though gi and hence nci are cyclic.

While the first two cases are intuitive, it seems strange that in the

third case we allow the DP-based independence procedure to operate

with a cyclic circuit. The empirical idea however, is that the extracted

cyclic nci represents the condition that wi will not affect w′
i through

a cyclic flow-graph. This condition happens to be tighter than the NC

condition extracted under the assumption that other feedback-edges

in gi are simply open. This difference is sufficient for avoiding the

cyclic keys that CycSAT can land on especially when all ncis are

conjoined. Figure 5 shows an example. Here the feedback-arc-set is

{c, e}. When constructing the non-cyclic condition for edge c, we

are in case 2, where we arrive at the other edge e in the feedback

set, however, the cone gc is acyclic. In this case rather than assuming

e will be open, we continue exploring through e along the blue line,

blocking this path in the process which helps avoid (k2, k3) = (1, 1).

We then perform the independence analysis on edge e. In this case

the cone ge is cyclic if we assume that c is not open and hence this

falls in case 3. Here if k2 is 1, e will have to be blocked at k3 or k1.

If k2 is 0, e will be blocked immediately. Hence the NC condition

from analyzing e does not disrupt the condition already extracted

from c and the attack returns a correct key.

Our first attack called IcySAT-I, will extract NC conditions by

wi’
wi
x
k

gi(wi, x, k) x1
k1

wi
wi’

1
k1

0

nci
(a) (b)

Fig. 6: (a) Fanin cone of feedback-arc w′
i partitioned according to wi,

x and k’s fanout sets. (b) Transforming a cone gi to a circuit nci
representing the condition on the blocker k1 for independence of w′

i
and wi.

Algorithm 2 Given w a feedback wire construct the circuit that
represents the F (w′, w) condition on the key.

1: function ICYSAT-I NCCOMPUTE(w a feedback arc)
2: F (k)← NEWCIRCUIT(); w′ ← F.NEWWIRE(); M ← MAP()
3: for g ∈ BACKWARDBFSGATES(w) do
4: for u ∈ GATEINPUTS(g) do
5: if u ∈ TRANSFANOUT(w) then
6: M [u]← F.NEWWIRE(); Blockee.add(u)
7: else if u is key then
8: M [u]← MITTERKEY(u); Blocker.add(u)
9: else if u ∈ KEYEXCLUSIVELOGIC() then

10: M [u]← F.NEWWIRE(); Blocker.add(u)
11: else if u = w then M [u]← F.CONST0(); Blockee.add(u)
12: else M [u]← F.CONST1(); Blockee.add(u)

13: F (k).ADDTRANSFORMEDGATE(g,Blocker,Blockee,M)

14: return F (k) as non-cyclic condition circuit for w

converting gis to ncis and conjoining them. As per Figure 6a the

wires in the cone are partitioned to blocker, blockee based on their

membership in the fanout sets of x, k, and wi. wi itself is tainted with

0 and its propagation to the output should be blocked by demanding

that the output be 1/non-wi-dependent. Figure 6b shows an example

of this. Algorithm 2 details the procedure.

IV. CYCLIC TARGETS AND BEYOND (ICYSAT-II)

IcySAT-I can fail in cases where the original circuit itself is cyclic.

Additionally the kind of dependency analysis performed in IcySAT-

I, ternary simulation, and CycSAT, are fundamentally imprecise. We

discuss these issues herein.

A. On Logic-CycSAT
In IcySAT-I and the structural-CycSAT attack, the NC condition for

an edge is a condition on the key only. In IcySAT-I any wire in the

cone gi(wi, x, k) that is solely controlled by x was simply assumed

to not be related to wi when building nci (circuit for F (w′
i, wi)). Per

Figure 6b and Line 12 of Algorithm 2, we set x1 and any non-key-

controlled wire outside of the fanout set of wi to 1/non-wi-dependent.

When the original circuit is cyclic-yet-combinational, typically, the

cycles in the original circuit are structural-only and break up under

all possible inputs. In this case, for the feedback-arc-set W , for all

wi ∈W , w′
i = gi(wi, x, k∗) will not depend on wi for any input x

under the correct key k∗. In this case the x-controlled variables in

the fanin cone of w′
i (e.g x1 in Figure 6b) become important as they

themselves help break up certain cycles in the circuit.

Logic-CycSAT proposed in [8], suggested handling this case by

defining the NC condition over both the keys and inputs for breaking

cyclic+cyclic locking. The idea is to extract NC(x, k) which allows

x to participate in breaking cycles along with k. IcySAT-I can simply

be slightly modified to extract such a condition as well. Rather than

Authorized licensed use limited to: University of Florida. Downloaded on August 26,2020 at 21:56:22 UTC from IEEE Xplore.  Restrictions apply. 



aa aa
’ ’

(b)(a)

Fig. 7: Circuits with local cyclic behavior, not propagated to the output.
(a) Internal oscillation. (b) Internal statefulness.

setting all wires in the cone gi that are exclusively in the fanout of

inputs x to 1, these wires can be included as blockers which will

help extract NC(x, k) in polynomial time.

In [8] it is suggested that NC(x, k) will constrain x, limiting the

attack to particular input patterns. Hence subsequent to extracting

NC(x, k), a second phase follows to find input patterns that are

outside of NC(x, k) and patch the NC condition for said input

patterns. However, fundamentally, NC(x, k) if extracted properly,

captures a condition on inputs and keys for which the feedback arcs

are broken. Hence such a condition should not constrain x at all. This

is because there will exist at least one key k̂ ∈ K∗ which satisfies

NC(x, k̂) regardless of x as the circuit should naturally break all of

its cycles and the second phase must be unnecessary.

The above approach can work in cases where the feedbacks in the

original circuit are always broken by the inputs. However, we can

have a cyclic circuit that has internal floating or even oscillating

nodes, where these nodes despite having local sequential/cyclic

behavior, do not affect the output under any input pattern. Take the

circuit in Figure 7b. Signal w is clearly a cyclic/floating net. If we

cut this net and form an NC condition to make w′ not depend on

w, this NC condition will simply be unsatisfiable as there is no way

to block w from affecting w′. The case in Figure 7a is even worst

as the inverter will cause an internal oscillation and will yield an

unsatisfiable formula as soon as it is included in the cone gi of any

other feedback wire as well.

Assuming that there is no internal oscillation in the original circuit,

which is a fair assumption as such oscillation will waste power, heat

up the device, and add noise to other signals, then we can modify

the IcySAT-I NC condition to handle the case in Figure 7. We can

demand that each feedback wire either not affect itself, or not affect

the outputs. This can be done by building nci = gi ∨ goi where

goi is a multi-output dependency circuit that tracks the effect of wi

on the outputs. Attacks using such complex independence conditions

are fragile however due to the impreciseness of the procedure as we

discuss in the following subsection.

B. Impreciseness of Independence Conditions
An important part of the cyclic SAT attacks discussed so far is

encoding the dependence of a function on a particular variable into a

formula that can be appended to the SAT solver without exponential

work. Namely, for the function gi(wi, x, k) we were interested in

extracting a condition on x, or k, or both to ensure that wi does

not affect the output of gi. This was done using taint-propagation.

The idea is that we taint the input wi (i.e. in the case of IcySAT-

I we tie it to 0/wi-dependent). The circuit nci then represents the

propagation of this taint through gi to w′
i using propagation rules.

An example of such rules is that we assume that if a gate has two

inputs that are dependent on wi, the output of the gate must also be

dependent on wi. BeSAT uses ternary simulation in a similar way.

The broken feedback signals are set to X (tainted as unknown), then

the X taints are propagated through the circuit with propagation rules,

one of which is that if a gate has two inputs that are X , the output

is definitely going to be X and unknown as well.

It is trivial to show that in fact this form of taint-propagation is

not accurate. Take Figure 7a. The AND gate has two inputs ā and a.

Both of these inputs depend on a, hence both the IcySAT-I approach

and ternary simulation will suggest that the output of this gate is also

going to be dependent on a. However, we know that in reality the

output of the gate is going to be constant and 0.

It is easy to show that this inaccuracy does not only occur when the

output of a gate is constant. Given an OR gate with input f1(a, x),
and f2(a, x) where both f1 and f2 are dependent on a, the condition

for the output of the gate to not depend on a is f1(0, x)∨f2(0, x) =
f1(1, x)∨ f2(1, x) for all x. Since the condition has to hold true for

all x, the two sides can be thought of as vectors and since the vectors

can all be arbitrary, it is easy to see how there are an exponential

number of vectors that satisfy this condition without the output of

the OR being a constant 0 or 1.

The taint-propagation approach in fact under-approximates inde-

pendence. In other words, if taint-propagation asserts that that the

output of a function is not dependent on a particular input, then

the function is definitely independent of that variable. If however,

taint-propagation concludes that the output does depend on an input

variable, it is possible for this to be false. These techniques were

originally studied in the context of logic synthesis and analysis of

cyclic circuits [13] where this under-approximation is not critical.

However, when it comes to cyclic deobfuscation, it is easy for the

defender to deliberately use these cases to hinder cyclic attacks. The

defender can use simple reconvergent paths such as the ones discussed

earlier in Figure 7, to create a scenario where taint-propagation-

based NC condition extraction ends up excluding the correct key

or generating an unsatisfiable formula.

Is there a way to improve the precision of taint-propagation?

There may be some possible solutions. First consider the case for

gi(wi, x, k) where we want to extract a condition on x and k to

block wi. A simple formulation for this is gi(0, x, k) = gi(1, x, k)
which can be represented with a CNF. If gi is acyclic, satisfying this

formula will only return x and k for which wi is killed. However, if

gi is cyclic, this approach can fail as the condition can be satisfied

using the internal floating variables.

If we are looking for conditions on a subset of inputs of gi to block

wi, the formula representing the precise independence can become

a Quantified-Boolean-Formula (QBF) which requires a multitude of

SAT queries to solve. E.g. the condition on k that gi does not depend

on wi for all possible values of x is ∀x gi(0, x, k) = gi(1, x, k)
where x has to be removed through a universal quantifier.

Another approach for capturing true dependency is to use a Binary-

Deicion-Diagram (BDD) representation. In the case of Figure 7 if we

can compute a manageable sized BDD (not always possible) of the

output node, it will reveal that the variable a does not affect the

output. Quantification on BDDs can help as a systematic technique

for building precise dependency conditions.

C. A Complete Cyclic Deobfuscation Procedure
The issues discussed above can render IcySAT-I useless against

smarter defenses. We now discuss IcySAT-II as an attack that is

a complete procedure for cyclic deobfuscation. This means that

regardless of whether the original circuit is cyclic, or if the feedback

dependencies are reconvergent, or if the circuit contains internal

oscillations that do not leak to the output, this procedure will

terminate in finite time with a guaranteed correct key.

The idea behind the attack is simple. The feedback arcs in the

circuit are first broken up. This transforms the circuit ce(x, k)→ o to

cbe(w, x, k)→ (w′, o). w′ are new outputs and w are new inputs. cbe
is now an acyclic circuit. Now we take cbe and treat it as a sequential

circuit that operates on |w| registers. Since the behavior of a cyclic

Authorized licensed use limited to: University of Florida. Downloaded on August 26,2020 at 21:56:22 UTC from IEEE Xplore.  Restrictions apply. 



circuit is somewhat similar to that of a sequential circuit, we can

“unroll” this circuit t times to represent its operation over t time

frames. Unrolling is done by replicating the circuit t times, then

taking the w′ wires in time frame i and feeding them to the w signals

in time frame i + 1 for all i ∈ 0...t − 1. The x and k wires in

all frames are connected to the same original inputs and keys. The

w signals in the first frame are treated as new primary inputs and

only the output signals in the last frame are used as primary outputs

obtaining cue (w, x, k)→ o. A |w| number of new imaginary primary

inputs are also added to the oracle, although they do not affect its

output. i.e. co(x) → o becomes c+o (w, x) → o. Now we can run

any oracle-guided attack on the new obfuscated/original circuit pair

(cue (w, x, k), c+o (w, x)) to find a correct key.

In essence we are modeling the cyclic circuit as a sequential circuit

with flip-flops on each feedback arc. Stating that the w signals not

affect the output of the oracle means we are demanding that the

initial state in this new sequential circuit not affect its output. This is

equivalent to the definition of a cyclic-yet-combinational circuit for

which its behavior is independent of the choice of the initial value

of feedback arcs, i.e. the outputs settle eventually.

An important question that follows is how many rounds should

the circuit be unrolled? To see this consider the loop in Figure 2a.

One choice of feedbacks is to cut only one edge e1 in this loop to

break the loop. If this edge is the only broken edge, it is possible to

see how unrolling the circuit twice (two copies of ce) will allow the

broken input signal e1 to reach its counterpart signal e′1. If however,

two edges are broken, we need to unroll the circuit one more time to

make sure that the signal e1 can reach signal e′1 within the unrolling.

If any signal wi cannot reach its counterpart in the unrolled circuit,

the unrolled model is incomplete, as the full effect of wi is not

modeled. Hence it is possible to prove that we need to unroll at

least N rounds where N is the largest number of feedback edges

that will be encountered between any broken feedback wi and w′
i.

Since calculating this requires solving the NP-complete problem of

longest-simple-path, in our experiments we simply unroll up to |W |
rounds where W is the feedback-arc-set.

V. EXPERIMENTS

We implemented the proposed attacks in a C++ framework using the

Glucose SAT solver. The experiments presented here were run on a 96

core AMD EPYC server with 256GB of memory running at 1.9GHz.

The attack tests were run in parallel. The number of simultaneous

processes was limited to 90 to avoid resource sharing from skewing

the data. All recovered keys were verified with equivalence checking.

We first perform tests on the c432 ISCAS benchmark to show the

limitation of BeSAT. We implement BeSAT by checking whether a

key is cyclic and banning it by adding a single clause to the solver.

The circuit is locked with CrossLock from [14] which inserts N×M
cross-bars into the circuit represented by N M -input key-controlled

MUXs. The crossbars are inserted randomly and creating multiple

entangled cycles in the obfuscated circuit is highly likely. The results

are shown in Table I. As can be seen, for small key lengths BeSAT

performs similar to IcySAT-I, however, as the number of key-bits

increases the larger width of the multiplexers means that there will

be many cyclic keys. BeSAT ends up trying to ban such patterns

one by one as opposed to IcySAT-I which scales nicely since the

non-cyclicness is being captured by a concise formula.

We then tested IcySAT-I on a set of ISCAS and MCNC benchmark

circuits adopted from [1]. The circuits are locked with the original

cyclic locking technique from Shamsi et al. in [7] which finds N
paths of length L, feeds back their head to their tail, and inserts

additional MUXs to make the edges appear removable. We apply this

technique across the benchmarks with loops of length 5, where the

number of loops is selected to ensure reaching the overhead category

(5%, 10%, etc.). These results are presented in Table II which show

deobfuscation times within minutes for circuits with many loops.

The next tests perform the unrolling attack (IcySAT-II) on circuits

that are cyclified before obfuscation. The cyclification is performed

by finding AND/OR gates in the circuit, and selecting a feedback

wire from their transitive fanout. Then the feedback wire is mixed

with the target gate in a way similar to that in Figure 7 where the

dependency analysis of IcySAT-I will under-approximate the non-

cyclic condition and cause the attack to fail. 8 such edges are added to

each of the circuits. In addition we inserted a few inverter loops to test

the ability of the unrolling attack in deobfuscating cyclic circuits that

have internal oscillations/statefulness that do not leak to the output.

To discover the number of frames that must be unrolled we go

through the feedback arcs one by one and look at the logic that

connects wi to w′
i. Ideally we must find the simple path in this logic

that meets the most number of other feedback wires (wj , j �= i).
Since this problem is NP-complete, we simply resort to counting

the total number of feedback wires in gi(wi, x, k). This can end up

unrolling more than necessary but will not disrupt the correctness of

the attack. Note that while the minimum feedback-arc-set is an NP-

complete problem, trying to at least reduce the size of the feedback-

arc-set can be a good way to reduce the complexity of IcySAT-II.

Subsequent to unrolling, we use ABC to simplify the circuit (several

rounds of rewriting, refactoring, and SAT-sweeping) since there are

many equivalent nodes in the unrolled circuit. This was able to reduce

the size of the unrolled circuit by 5% to 50% across the benchmark

circuits. We then perform the conventional SAT attack to recover

the key. The results of this attack are shown in Table III which

is consistent with the expectation that IcySAT-II should be more

complex than IcySAT-I.

TABLE I: IcySAT-I compared to BeSAT for CrossLock on c432.

CB
dim

#keys
IcySAT-I
DIP-iter

BeSAT
key-ban

iter

BeSAT
DIP-iter

IcySAT-I
time(s)

BeSAT
time(s)

4x4 12 4 91 5 0.06 0.06
6x6 18 8 130 7 0.10 0.09
8x8 32 13 3883223 15 0.09 3379

10x10 40 24 103946 24 0.15 1131
12x12 48 29 - - 0.25 -
14x14 56 26 - - 0.9 -

VI. CONCLUSION

In this paper we presented an efficient algorithm for generating

NC conditions for cyclic deobfuscation avoiding the exponential

complexity of existing techniques. We further expanded upon the

fundamental limitations of NC conditions, presenting a complete

procedure for cyclic deobfuscation. Faster cyclic deobfuscation can

help better understand the security of a myriad of interconnect-

oriented hardware protection schemes.

ACKNOWLEDGEMENTS

The work is partially supported by the Defense Advanced Research

Projects Agency (DARPA) and the National Science Foundation

(NSF-1812071).

REFERENCES

[1] P. Subramanyan, S. Ray, and S. Malik, “Evaluating the security of logic
encryption algorithms,” in Proc. IEEE Int. Symp. on Hardware Oriented
Security and Trust, pp. 137–143, 2015.

Authorized licensed use limited to: University of Florida. Downloaded on August 26,2020 at 21:56:22 UTC from IEEE Xplore.  Restrictions apply. 



TABLE II: IcySAT-I results. Benchmarks are locked by adding as many loops of length 5 to reach the overhead category. Dashed cells reached the
time-out limit which is 1 hour. All recovered keys were verified with cyclicness testing and equivalence checking.

overhead 5 % 10 % 15 % 25 %

bench #in #out #gate #key #DIP time(s) #key #DIP time(s) #key #DIP time(s) #key #DIP time(s)

c432 36 7 160 9 5 0.06 16 8 0.09 25 11 0.08 39 12 0.22
c499 41 32 202 15 7 0.10 23 13 0.12 31 21 0.17 49 20 0.25

i4 192 6 338 19 17 0.11 39 40 0.22 58 34 0.18 85 81 1.94
c880 60 26 383 17 6 0.21 34 12 0.23 51 22 0.32 81 20 0.98
c1355 41 32 546 22 15 0.24 45 16 0.46 67 24 0.86 107 39 5.10
apex2 39 3 610 39 27 0.26 69 37 0.79 98 60 2.67 155 75 8.67
c1908 33 25 880 45 21 0.59 79 23 1.24 124 34 4.52 202 41 1586

i9 88 63 1035 56 13 0.23 103 21 0.60 148 18 0.66 235 25 3.92
ex5 8 63 1055 58 27 0.38 105 31 0.51 151 41 0.82 254 62 11.40

c2670 157 64 1193 55 26 0.47 106 36 1.23 157 80 6.73 262 108 153
i7 199 67 1315 67 24 0.56 134 42 0.88 190 38 0.59 312 39 1.86

c3540 50 22 1669 79 20 3.13 150 34 12.24 222 47 45.38 357 63 406
k2 46 45 1815 95 43 1.67 179 53 5.98 258 60 16.95 411 76 357

dalu 75 16 2298 112 38 2.83 214 70 80.08 326 94 690 531 - -
c5315 178 123 2307 101 35 2.56 205 65 15.06 302 87 34.55 498 122 1617

i8 133 81 2464 122 30 0.88 237 60 2.58 349 52 6.24 504 88 191
c7552 206 107 3512 159 54 5.60 315 93 96.83 460 - - 644 - -

seq 41 35 3519 176 86 7.10 352 133 265 521 - - 722 - -
ex1010 10 10 5066 259 107 20.74 505 188 2301 742 - - 742 - -
apex4 10 19 5360 262 87 15.97 527 126 747 789 - - 807 - -

des 256 245 6473 302 65 11.52 600 73 373 638 70 586 638 72 780

TABLE III: IcySAT-II results. Circuits are first cyclified with 8 feedback edges. Then loops of length 5 are created until the overhead number is
reached. Dashed cells reached the time-out limit which is 1 hour. All recovered keys were verified with cyclicness testing and equivalence checking.

overhead 5 % 10 % 15 % 25 %

bench #in #out #gate #key #DIP time(s) #key #DIP time(s) #key #DIP time(s) #key #DIP time(s)

c432 36 7 160 9 8 0.90 17 10 0.81 25 14 1.61 41 26 28.51
c499 41 32 202 15 9 2.99 22 11 4.46 30 14 3.04 45 34 540

i4 192 6 338 19 15 0.29 38 38 0.80 58 36 0.54 83 66 21.01
c880 60 26 383 16 9 1.09 35 14 3.79 53 19 6.77 89 19 71.24
c1355 41 32 546 21 17 7.28 44 38 31.95 65 29 67.35 104 29 527
apex2 39 3 610 38 29 2.04 66 48 15.57 95 59 45.30 150 - -
c1908 33 25 880 49 15 76.79 84 27 273 125 32 379 204 - -

i9 88 63 1035 59 25 6.04 107 19 8.58 152 17 11.68 246 21 152
ex5 8 63 1055 57 26 0.83 105 46 30.51 151 40 72.04 251 53 926

c2670 157 64 1193 51 39 7.65 101 65 66.49 156 137 1083 260 - -
i7 199 67 1315 67 13 0.76 134 21 1.66 191 38 1.55 316 31 185

c3540 50 22 1669 75 27 386 148 41 2675 228 - - 360 - -
k2 46 45 1815 90 31 16.25 174 48 3432 256 - - 405 - -

dalu 75 16 2298 115 47 762 217 - - 333 - - 547 - -
c5315 178 123 2307 106 35 6.71 206 48 894 298 52 3452 499 - -

i8 133 81 2464 121 38 2.54 233 42 608 345 - - 521 - -
c7552 206 107 3512 162 50 607 324 - - 472 - - 596 - -

seq 41 35 3519 179 70 605 354 132 20375 518 - - 674 - -
ex1010 10 10 5066 251 113 3270 492 - - 719 - - 719 - -
apex4 10 19 5360 259 99 92.68 522 - - 771 - - 771 - -

des 256 245 6473 312 62 1643 613 - - 706 - - 706 - -

[2] M. El Massad, S. Garg, and M. V. Tripunitara, “Integrated circuit (IC)
decamouflaging: Reverse engineering camouflaged ICs within minutes.,”
in Proc. Network and Distributed System Security Symp., 2015.

[3] K. Shamsi, T. Meade, M. Li, D. Z. Pan, and Y. Jin, “On the approxima-
tion resiliency of logic locking and ic camouflaging schemes,” IEEE
Transactions on Information Forensics and Security, vol. 14, no. 2,
pp. 347–359, 2019.

[4] M. Yasin, A. Sengupta, M. T. Nabeel, M. Ashraf, J. J. Rajendran,
and O. Sinanoglu, “Provably-secure logic locking: From theory to
practice,” in Proc. ACM Conf. on Computer & Communications Security,
pp. 1601–1618, ACM, 2017.

[5] K. Shamsi, M. Li, T. Meade, Z. Zhao, D. Z. Pan, and Y. Jin, “AppSAT:
Approximately deobfuscating integrated circuits,” in Proc. IEEE Int.
Symp. on Hardware Oriented Security and Trust, 2017.

[6] Y. Shen and H. Zhou, “Double DIP: Re-evaluating security of logic
encryption algorithms,” in Proceedings of the on Great Lakes Symposium
on VLSI 2017, pp. 179–184, ACM, 2017.

[7] K. Shamsi, M. Li, T. Meade, Z. Zhao, D. Z. Pan, and Y. Jin, “Cyclic
obfuscation for creating sat-unresolvable circuits,” in Proc. IEEE Great
Lakes Symp. on VLSI, 2017.

[8] H. Zhou, R. Jiang, and S. Kong, “CycSAT: SAT-based attack on cyclic
logic encryptions,” in Proc. Int. Conf. on Computer Aided Design,

pp. 49–56, IEEE, 2017.
[9] S. Roshanisefat, H. Mardani Kamali, and A. Sasan, “Srclock: Sat-

resistant cyclic logic locking for protecting the hardware,” in Proceed-
ings of the 2018 on Great Lakes Symposium on VLSI, pp. 153–158,
ACM, 2018.

[10] A. Rezaei, Y. Shen, S. Kong, J. Gu, and H. Zhou, “Cyclic locking and
memristor-based obfuscation against cycsat and inside foundry attacks,”
in Proc. Design, Automation and Test in Europe, pp. 85–90, IEEE, 2018.

[11] Y. Shen, Y. Li, A. Rezaei, S. Kong, D. Dlott, and H. Zhou, “Besat:
behavioral sat-based attack on cyclic logic encryption,” in Proceedings of
the 24th Asia and South Pacific Design Automation Conference, pp. 657–
662, ACM, 2019.

[12] S. Chen and R. Vemuri, “On the effectiveness of the satisfiability
attack on split manufactured circuits,” in 2018 IFIP/IEEE International
Conference on Very Large Scale Integration (VLSI-SoC), pp. 83–88,
IEEE, 2018.

[13] S. Malik, “Analysis of cyclic combinational circuits,” IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems, vol. 13,
no. 7, pp. 950–956, 1994.

[14] K. Shamsi, M. Li, D. Z. Pan, and Y. Jin, “Cross-lock: Dense layout-level
interconnect locking using cross-bar architectures,” in Proc. IEEE Great
Lakes Symp. on VLSI, 2018.

Authorized licensed use limited to: University of Florida. Downloaded on August 26,2020 at 21:56:22 UTC from IEEE Xplore.  Restrictions apply. 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize false
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /ComicSansMS
    /ComicSansMS-Bold
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /Impact
    /Kartika
    /Latha
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaConsole
    /LucidaSans
    /LucidaSans-Demi
    /LucidaSans-DemiItalic
    /LucidaSans-Italic
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MonotypeCorsiva
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /MVBoli
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Vrinda
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 200
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 200
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 400
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create PDFs that match the "Required"  settings for PDF Specification 4.01)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


