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Experiment 7 
Hardware-based Security Primitives  
and Their Applications  
 

We introduce two most important hardware-based security primitives: physical unclonable 

functions (PUFs) and true random number generator (TRNG). We also introduce the applications of 

these security primitives to defend counterfeiting attacks at the chip level. 
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🗐Theory Background 
1. PUF 
Physical unclonable function (PUF) is an emerging potential security primitive for generating volatile secret keys in cryptographic applications. 

There are different types of PUFs implemented in FPGA [1-8]. A PUF is described as unclonable due to its uniqueness being derived from the 

uncontrollable variations introduced during the manufacturing process. PUFs offer a high level of protection in cryptographic applications with 

strong volatile key storage. PUFs are issued a challenge and (ideally) produce a unique and reliable response in return. Since this response is 

unique to the device, it can, therefore, be used as a device ID or key. In this experiment, we will learn two most popular PUFs: SRAM-based PUF 

and ring-oscillator (RO)-based PUF. 

1.1 SRAM-based PUF: 
The usage of SRAM as the PUF medium is appealing for a variety of reasons. Most notably, 
SRAM is commonly available in most systems and therefore does not require additional 
hardware. For a standard 6T SRAM (Figure 1), every memory cell is composed of six 
transistors that are two cross-coupled CMOS inverters and two access transistors. The 
inverters are designed to be symmetric, match in size, etc., but random variations incurred 
during manufacturing will result in random mismatches. SRAM PUFs exploit the mismatch 
which results in each SRAM cell being biased (or skewed) toward a zero or one at power-up. 
Due to uncontrollable variations in the manufacturing process, different CMOS devices have 
different physical parameters (e.g., doping-levels, transistor oxide thickness, etc.). When an 
SRAM is powered-up, these variations affect the power-up state of their associated cells. It 
has been observed that certain cells have a strong preference to power-up to a ‘1’ or ‘0’ state. 
Cells that have no preference are deemed neutral and power up at random depending upon 
the influences of system noise [5]. The more useful cells for PUF output are the ones that 
strongly prefer ‘0’ or ‘1’. 

 
Figure 1 SRAM memory cell used as PUF 
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1.2 RO-based PUF: 

Figure 2 shows a conventional RO-based PUF which generally consists of N identically 
laid out ROs, two counters, a comparator, and two N-bit multiplexers. Each RO 
consists of an odd number of inverters and oscillates with a particular frequency. 
Because of process variation and inherent random noise, each RO oscillates with a 
slightly different frequency than others even though they are designed to be 
identical. A response bit is generated by comparing the frequency of two identical 
ROs, where one RO is faster than the other and generates one (or zero) by a 
comparator. A pair of ROs is chosen, in order to generate a bit, by applying a digital 
sequence of length log2(N), known as a challenge. The applied challenge in both 
MUXs selects RO from each MUX and forms a pair. The counters connected to the  

 
Figure 2 RO-PUF 

MUXs count the number of oscillations of each of the paired ROs for a fixed time interval. This time interval is known as comparison time and 
impacts the reproducibility of a key. Usually, the comparison time needs to be larger when the difference between the frequencies of ROs in a 
pair is very low. The comparator generates a bit from the counters’ outputs by comparing the corresponding values and set `0’ or `1’ based on 
which oscillator from the selected RO pair is faster, i.e., has a greater count for the given comparison time. 

 

1.3 PUFs Evaluation:  
Reliability: The Reliability of a PUF determines how often a PUF can generate the same response to a given challenge. A PUF must generate the 

same response at all operating conditions.  

Uniqueness: Uniqueness measures how well a single PUF is differentiated from other PUFs based 
on its challenge-response pair. Different PUFs must generate different responses for a given 
challenge in order to separate one from another. The average inter-chip fractional hamming 
distance for an ideal PUF must be 0.5. If a PUF circuit is instantiated on several different chips, then 
each of the PUF instantiations is expected to produce unique responses when supplied with the 
same challenge C. In general, C is an m-bit binary input which is supplied to the each of the PUF 
instantiations. The responses R1, R2, R3, and R4 are n-bit binary strings (Figure 3). 

 
Figure 3 PUF Uniqueness 

Randomness: Entropy can be used to measure the randomness of a PUF. It’s the reflection of the amount of 1s and 0s in a sequence. 

Diffuseness: The diffuseness, as discussed earlier, is very similar to the uniqueness. How responses of the same PUF are different for different 

challenges. 
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2. True Random Number Generator:  

2.1 TRNG and an example: RO-based TRNG 

 

Figure 4 RO-based TRNG  

A random number generator (RNG) is an important security block widely used in most cryptographic applications such as one-time pads, session, 

and temporary keys, nonce, seeds, challenges for authentication, zero-knowledge protocols, hardware metering, generation of primes, secure 

communications, secured servers and processors, VPN access, and customer-facing web access. A quality RNG generates statistically 

independent and unpredictable sequences of random numbers. Compromising an RNG often means compromising an entire system. A true RNG 

(TRNG) translates random physical phenomena such as thermal noise, atmospheric noise, shot noise, radio noise, flicker noise, clock jitter, phase 

noise, noise in a compact memory etc. into random digits. A TRNG must have uniform statistics; non-uniform statistics due to biased random 

sequences help attackers to guess the random numbers. Generally, random numbers are generated by comparing two symmetric devices which 

possess some process variation (PV) and random inner noise [9-11]. 

TRNG consists of a source of randomness (entropy) and a randomness extractor. Metastability of logic cells and timing jitter of Ring Oscillators 

(ROs) are the most common sources of entropy for a TRNG. The simplicity of implementation and entropy collection have made the RO-based 

TRNG most popular. Figure 4 shows a conventional RO-based TRNG where the RO outputs are combined by an XOR-tree. The output of the XOR-

tree, SXOR, is sampled constantly by a synchronous D flip-flop driven by the system clock to convert RO jitter into a random digital sequence. 

Jitter, in this case, represents the deviation from ideal RO behavior caused by random process variation and temporal variations such as random 

physical noise, environmental variations, and aging. Without jitter, the ROs will possess almost identical phase and the output of XOR-tree would 

be almost constant which is undesirable. Among the variations, only the random physical noise (thermal noise, atmospheric noise, shot noise, 

radio noise, flicker noise, etc.) improves the randomness/entropy of the bitstream output by the TRNG. 
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2.2 TRNG Evaluation: 
Unlike the PUF output, the TRNG output has to be different from measurement to measurement so that attacker cannot guess future output 

from previous TRNG output. NIST test is used to measure the randomness of a TRNG output [4]. NIST’s statistical test suite is popularly used to 

evaluate the quality of randomness for random and pseudorandom number generators designed for cryptographic applications and can also be 

used for PUF [9-11]. There is a total of 15 NIST tests and different tests require a different minimum length of bitstreams. For example, rank test, 

linear complexity test, and overlapping template matching test require at least 38912, 106, and 106 bits long bitstreams respectively. On the 

other hand, frequency test, block frequency test, and runs test require a minimum of 100-bit long bitstream 

3. Application of PUFs in Supply Chain Integrity 
PUFs can serve as a root of trust and can provide a key which cannot be easily reverse engineered. One of the biggest issues in any supply chain 

management is being able to verify that the product ordered is the product received. The electronics industry makes great strides to verify the 

integrity of their product lines. For example, the distributor your group used to complete the Bill of Materials for the previous experiment, Digi-

Key, is a member of the trade association Electronic Component Industry Association, or ECIA, which strives to ensure that no counterfeit 

devices enter the supply chain.  However, one can’t always order from verified suppliers. In this case, it is necessary to order components from 

unauthorized resellers, increasing the risk of acquiring counterfeit goods. One emerging research area to counteract this problem is in the area 

of Physically Unclonable Functions. The gist of the idea of a PUF is that the manufacture of the goods will use some sort of intrinsic process 

variation to generate a unique signature for every device. This signature is entered into a database so that the end user can, using the same 

signature generation process, generate and verify the signature of their device. 

Applications of PUF includes cryptographic key generation memoryless key storage, device authentication, PUF-based RFID for anti-

counterfeiting, Intellectual Property (IP) protection etc. 
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🖳Experiment Set-up: Configuration 
 

The instruments needed for this experiment are the HAHA Board, a USB A to B cable, a USB Blaster, and a computer. Figure 5 shows the 

instruments connections.  

The software needed to program the microcontroller is Atmel Studio. Use Quartus to program the FPGA. MATLAB is recommended to process 

the data. 

 

Figure 5 Experiment set-up.  
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Instructions and Questions 
 

Part I SRAM PUF 
In this part, you will implement an SRAM PUF on the HAHA Board. Read 64 bytes of the SRAM power-up states from the Microcontroller to 

generate a signature. Only given a USB A to B cable, your PC cannot collect data directly from the Microcontroller. Therefore, you have to send 

data to the FPGA and then export.  

Program the Microcontroller. It needs to do two things: read and send. Refer to the datasheet to find the address range for the SRAM inside the 

Microcontroller. In this range, read 64 bytes power-up states. Note that when the Microcontroller is running, some SRAM addresses will be 

occupied, and these addresses will no longer hold their power-up states. Therefore, chose the addresses for your 64 bytes carefully and make 

sure they won’t be occupied by running your program. Use the 9 interconnections between the microcontroller and the FPGA to send data. 

Generate a clock signal on PORTC7 and send data on PORTD. 

Program the FPGA. It needs to do two things: receive and store. Instantiate a RAM in it that is big enough to store all the 64-byte data. Use the 

clock signal provided by the Microcontroller. After storing, export data to your computer from the In-System Memory Content Editor.  

Process your data with MATLAB according to the requirements given below and answer questions. 

1) Refer to the datasheet of the Microcontroller, what is the size of the SRAM in it? 

2) You should read the power-up states of the SRAM cells, i.e., the values are not changed by the program after power up. What addresses 

will be occupied by running your program? What addresses do you choose to get your 64-byte signature? (Hint: for affected addresses, 

their contents will look “much less random” than the power-up values.)  

3) Use the 9 interconnections between the Microcontroller and the FPGA to communicate. How can you generate a square wave from the 

Microcontroller IO pin? What’s the frequency? 

4) Turn in your code for the Microcontroller. Give comments to make it easier to read. 

5) Turn in your code for the FPGA. Turn in a screenshot of the In-System Memory Content Editor window after storing all data. 

6) Export data to a hex file and then process. Convert only the data (remove all other information, such as starting address and checksum 

values) in the hex file from hexadecimal to binary. This will be your signature S1. How many bits does S1 have? Include your S1 in the 

report in both hexadecimal and binary format. 

7) For S1, how many percentages of the bits are 0 and how many percentages are 1? What is the mean value (𝜇 =
1

𝑁
∑ 𝑥𝑖
𝑁
𝑖=1 )? [6] 
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8) Power OFF the whole board when taking different readings (remove USB and JTAG cable). Change the power supply for the 

microcontroller to be adjustable voltage source: 3.0V and 2.7V. Then power ON the board and read out the signature again. These will 

be your signature S2 and S3. Include S2 and S3 in the report in both hexadecimal and binary format. 

9) Are S2 and S3 the same with S1? How many bits are different? How much is the fractional intra hamming distance? [6] 

10) Turn in your code for calculating the mean value and the intra hamming distance for this part. 

 

Part II RO-PUF 
In this part, you should design a top module with the provided code to generate a 128-bit key.  

After compiling your code, you should compare symmetrical ROs to obtain the key. This must also include placing the MUXes and counters 

symmetrically. A sample script and snippet of sample code has been provided that demonstrates how to symmetrically place the RO elements 

using. The script generates a list of location assignments based on the element node name in Quartus. Use the chip planner and assignment 

editor to find the names of the PUF elements, then modify the script to generate location assignments for those as well. The output of the script 

will be saved to a .txt file whose contents must be added to the QSF file for your project. A sample of the QSF file additions will also be provided. 

See the appendix for additional instructions.  

1) Use the provided VHDL code and scripts to place the RO and PUF elements in such a way that they are physically symmetric. Turn in your 

code. 

2) Run the code to generate a 128-key. It is your K1. Turn in your K1. 

3) Change operating voltages to 3.0V and 2.7V separately to collect the Key for each case. They are your K2 and K3. Include them in the 

report. 

4) Are K2 and K3 the same with K1? How many bits are different? How much is the fractional intra hamming distance? [6] Analyze the 

reliability. 
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Part III SRAM as a TRNG  
In this part, you will modify your design for Part I so that it can work as a TRNG instead of a PUF. You can repeat your steps in Part I to collect 

multiple S1’s (under the same voltage and temperature condition). See if all the bits of S1 will stay the same whenever you collect them and find 

if there are bits that act more randomly than others. Use these bits to generate an 8-bit TRNG. 

1) What type of SRAM cells is a good candidate for TRNG? Select 8 bits from them. Include their addresses in your report and explain the 

procedure that you find them. 

2) Write code to generate an 8-bit random number with your SRAM in the Microcontroller. Turn in your code. 

 

Part IV RO-based TRNG 
In this part, you will write a VHDL/Verilog code for RO-based TRNG with ten 5-stage ROs (you can use Verilog code from RO-PUF). Use the same 

method as in Part II to make the ROs symmetric. Then collect 105 bits as your random number under different conditions as required below. 

1) Write a VHDL/Verilog code for RO-based TRNG with ten 5-stage ROs. Constrained routing: make the ROs symmetric. Collect 105 bits for 

each of the following cases. 

105-bit number Voltage Number of ROs Number of stages 

N1 3.3V 10 9 

N2 3.3V 20 5 

N3 3.3V 30 5 

N4 3.0V 10 5 

N5 2.7V 10 5 

2) Change the stage of ROs to 9. (N1) 

3) Change the number of ROs to 20 and 30. (N2 and N3) 

4) Change the operating voltage to 3.0V and 2.7V. (N4 an N5) 

5) Analyze the robustness of RO-based TRNG you designed. 

6) Optional: perform NIST test. (See the optional Part VI) 
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🖉Optional Follow-up 
Part V Uniqueness evaluation  
Exchange your HAHA board with another group temporarily to finish this part. Get back your own HAHA Board afterward. 

1) Run your group’s own SRAM PUF code on other group’s HAHA Board. Get signature S4. Compare signature S4 with the signature S1. Are 

they the same? How many bits are different? How much is the fractional inter hamming distance? [6] 

2) Run your group’s own RO PUF code on other group’s HAHA Board. Get signature and calculate the inter hamming distance with the 

signatures you got in Part II. 

As Edge students don’t have access to a second board, you can finish the extra requirement in Part VI to get full bonus points. 

Complete this part for up to 10% extra points. 

 

Part VI Randomness evaluation 
Evaluate the randomness of your random numbers N1-N5 using the test suite provided in [4]. The more tests you do, the better. Three different 

tests make the full credit for this part. Include your results in your report.  

For Edge students, you can run 5 more tests in order to earn full optional points. 

Complete this part for up to 10% extra points. 
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 Lab Report Guidelines 
 

Deliverable: 
1. In your report, answer ALL the questions. 

2. Give all the code for all the steps as required. 

3. Give photos/screenshots as required. 

 

Demonstration: 
Submit videos that fulfill the requirements below. 

1. For Part I, show how you get the data and store it in the FPGA.  

2. For Part II, show how you get the signature. 

3. For Part III, show that you can get different random numbers when you run it multiple times. 

4. For Part IV, show how you get the random numbers under 1 of the 5 listed conditions.  

5. No demo for Part V. 

Your videos should follow the format below. 

1. start with a commentary (3-4 sentences) on what this experiment is about and what are the goals. 

2. followed by a commentary (3-4 sentences) on the steps you follow to do the experiments. 

3. Next, you move the camera to show the experiment setup (the HaHa board, connection with Analog Discovery 2 and computer), go 

through the steps one by one on the setup - how you apply the inputs, what components of the HaHa board are involved, what you 

expect to see - and then show the outputs - e.g., recorded signal (if any), output LED or seven segment displays, etc. 

4. Next, add a commentary on the key lessons learnt through this experiment. If you've done any advanced options or explored anything 

beyond that is covered by the lab instructions, describe them too. 

5. The video should have no mistakes. 
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Appendix: Node Names and Symmetric Placement 
The following are the steps to find the node names elements in Quartus for use in the script.  

1. Identify the name of the module you want to target; in this case it is r0 and r1. 

 

2. Go to Tools > Chip Planner. Use Find to locate the node. The name highlighted is what you want to use in your script. 

 

3. The placements_ex shows an example of generating location assignments for the ROs. The place_RO def handles this. It constructs a string 

based on the node name to output the QSF placements. 
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4. The coordHandeler def takes care of setting the locations for the nodes. This takes care of illegal assignments, shifting to the next LAB when 

full, and can also change between combinational LUT placements (LCCOMB_X<xcoord>_Y<ycoord>_N<node>) and register flip flops 

(FF_X<xcoord>_Y<coord>_N<node>). This will work for the MUXes as well but will have to be changed for the counter as they will use carry 

chains which have a specific order. For the counter, manually setting the locations in the assignment editor may be a better option. To do 

this go to Assignments > Assignment editor. This would have to be done for the counter register and its corresponding LUT feeder. The 

image bellow shows an example of the counter location assignments for flip flops.  
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5. Once the location assignments have been generated by the script the output will be saved to a .txt file. The contents of this file can simply be 

copied and pasted into your QSF file which will add it to the assignment editor. Below is an example of the QSF file with added RO 

assignments. 
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6. Once the location assignments have been added to the QSF file or made in the assignment editor, you should see the nodes placed in the 

desired location in the chip planner. Below highlights the symmetrical placements of the two halves of the RO PUF.  

 

7. For more information on implementing RO PUF on Altera FPGAs please see the following paper.  

http://www2.informatik.uni-freiburg.de/~feiten/publications/feiten_2013_trudevice13.pdf 

http://www2.informatik.uni-freiburg.de/~feiten/publications/feiten_2013_trudevice13.pdf

