

Instructor: Dr. Swarup Bhunia
Co-Instructors/TAs: Reiner Dizon-Paradis and Shuo Yang

Experiment 10
Fault Injection Attacks
on HaHa v3.0 Board

We describe an experiment to implement a Fault Injection Attack in

order to compromise the security of the system.

1 | EEE 6744 Hands-On Hardware Security University of Florida

 Ex
p

er
im

en
t

1
0

Theory Background

Fault injection attacks intentionally cause errors in a system in order to compromise the security of the system.

1. Fault injection attack on cryptographic devices
Cryptographic algorithms are being employed in many consumer products, e.g., smart cards, cell phones, and set-top boxes, to meet their high-

security requirements. Unfortunately, these hardware modules, unless carefully designed, may result in security vulnerabilities. The

cryptographic algorithms that are being implemented are designed so that they are difficult to be broken mathematically. To obtain the secret

key, which allows the decryption of encrypted information, an attacker must perform a brute force analysis that requires a prohibitively large

number of experiments. For the most commonly used cryptographic algorithms, there is no known methodology to significantly reduce the

secret key search space.

However, it has been shown that secret information (such as the key to the encryption algorithm) can leak through side channels. Examples of

such side channels are the time needed to perform the encryption, or the power consumed by the device implementing the encryption

algorithm. Timing and power side channel attacks are based on the fact that the individual computation steps that are needed during the

encryption are dependent on the bits of the secret key and thus, the time needed for these steps and the power consumed by them is directly

correlated to the secret key bits. These attacks have proven to be effective and incur a relatively low cost. Furthermore, once a side-channel

attack technique has been developed and made public, high technical skills and/or expensive equipment are not required to apply it in practice.

A different type of side-channel attack that proved to be very effective is realized through the injection of deliberate faults into a cryptographic

device and the observation of the corresponding erroneous outputs. Using this type of attack and analyzing the outputs of the cryptographic

device, called differential fault analysis, the number of experiments needed to obtain the bits of the secret key can be drastically reduced. This

kind of active side-channel attacks has been in the last decade the subject of intense and expanding research, as it has been demonstrated to be

highly effective.

2. Fault injection techniques
The fault injection techniques that have been developed in order to alter maliciously the correct functioning of a computing device currently

include variations in the power supply voltage level, injection of irregularities in the clock signal, radiation or electromagnetic (EM) disturbances,

overheating the device or exposing it to intense light.

2 | EEE 6744 Hands-On Hardware Security University of Florida

 Ex
p

er
im

en
t

1
0 2.1 Voltage glitching

The first fault injection technique we describe is the underpowering of the device. Through running the chip with a depleted power supply, the

attacker can insert transient faults starting from single bit errors and become more invasive as the supply voltage gets lower. Since this

technique does not require precise timing, the faults tend to occur uniformly throughout the computation, thus requiring the attacker to be able

to discard results that are not fit to lead an attack. This methodology reported being effective on large integrated circuits such as the ARM9

processor, as well as on small application-specific integrated circuit (ASIC) implementations of the ciphers, results in delaying the correct setup

for the logic gates of the circuit. The voltage underfeeding, achieved by employing a precise power supply unit, requires the attacker to be able

to tap into the power supply line of the device and connect his power supply unit. This requires only basic skills and can be easily achieved in

practice without leaving evidence of tampering. Moreover, no knowledge of the implementation details of the device is needed.

2.2 Clock glitching
Another viable option for an attacker is to tamper with the clock signal. For example, it is possible to shorten the length of a single cycle through

forcing a premature toggling of the clock signal. Such shortening causes multiple errors corrupting a stored byte or multiple bytes. These errors

are transient and thus it is possible to induce such faults without leaving any tampered evidence. To alter the length of the clock cycle, the

attacker needs to have direct control over the clock line, which is the typical case when smart cards are targeted. It is not possible to attack chips

that generate their own clock signal since disconnecting the clock line from the circuit is difficult.

2.3 EM disturbances
A practical way to induce faults without having to tap into the device is to cause strong EM disturbances near it. The eddy currents induced in

the circuit by strong EM pulses cause temporary alterations of the level of a signal, which may be recorded by a latch. Since the EM pulse is

affecting uniformly the entire attacked device, it is necessary to shield the components which should not

be subject to faults using a properly grounded metal plate or mesh.

2.4 Flash glitching
Assuming the attacker can successfully decapsulate a chip, he can perform fault injection attacks by

illuminating the die with a high energy light source such as an ultraviolet (UV) lamp or a camera flash.

The strong radiation directed at the silicon surface can cause the blanking of erasable EPROM and FLASH

memory cells where constants needed for an algorithm execution are kept (e.g., the AES S-Boxes). This

technique is applicable only if the memory cells have not been covered by a metallic layer. For example,

metal wires placed above the memory cells may provide a shield against radiation.

Figure 1 Decapsulated IC

3 | EEE 6744 Hands-On Hardware Security University of Florida

 Ex
p

er
im

en
t

1
0 2.5 Laser glitching

The most straightforward refinement of the previous technique is to employ a laser beam instead of a camera

flash. The injected fault model is similar to that obtained when using a concentrated light beam, except for the

fact that the laser beam is capable of always inducing faults. Near-infrared lasers can also radiate the silicon die

from the back allowing the attacker to hit circuits which are in the bottom layers of the chip although with a

lower precision since the silicon substrate scatters the beam. It is worth noting that the inability to hit only a

single-bit memory cell (due to the size of the concentrated beam) does not necessarily imply an inability to

inject a single-bit fault.

3. Differential Fault Analysis (DFA) on AES
In October 1996, Biham and Shamir published an attack on secret key cryptosystems entitled Differential Fault

Analysis (DFA). It is a type of side channel attack in the field of cryptography, specifically cryptanalysis. The

principle is to induce faults (unexpected environmental conditions) into cryptographic implementations, to

reveal their internal

states. DFA is

frequently used nowadays to test the security of

cryptographic smartcards applications.

By using a DFA attack where a fault occurs on only

one bit of the temporary cipher result at the

beginning of the Final Round, the entire last round

key for an AES-128 can be obtained.

The Correct ciphertext (C) can be calculated from the 9th temporary cipher result (M9) and the 10th round key (K10) by

𝐶 = 𝑆ℎ𝑖𝑓𝑡𝑅𝑜𝑤𝑠(𝑆𝑢𝑏𝐵𝑦𝑡𝑒𝑠(𝑀9)) ⊕ 𝐾10……(1)

For the calculation of one byte, if the ith byte becomes the jth byte after ShiftRows, then the jth byte of the correct cipher is

𝐶𝑗 = 𝑆𝑢𝑏𝐵𝑦𝑡𝑒(𝑀𝑖
9) ⊕ 𝐾𝑗

10……(2)

If a fault ei is injected on the ith byte of M9 just before the final round, a faulty ciphertext on the jth byte (Dj) will be

𝐷𝑗 = 𝑆𝑢𝑏𝐵𝑦𝑡𝑒(𝑀𝑖
9 ⊕ 𝑒𝑖) ⊕ 𝐾𝑗

10……(3)

Figure 2 Sample Probing station

Figure 3 The last rounds of an AES-128

4 | EEE 6744 Hands-On Hardware Security University of Florida

 Ex
p

er
im

en
t

1
0 From the above equations, we have

𝐶𝑗 ⊕ 𝐷𝑗 = 𝑆𝑢𝑏𝐵𝑦𝑡𝑒(𝑀𝑖
9) ⊕ 𝑆𝑢𝑏𝐵𝑦𝑡𝑒(𝑀𝑖

9 ⊕ 𝑒𝑖)……(4)

Cj is easy to get when there is now fault. Dj can be obtained when a one-bit fault is injected. Therefore, 𝑀𝑖
9 can be calculated. From 𝑀𝑖

9, 𝐾𝑗
10 can

be deduced. Then the key K can be known.

4. Clock glitching attack on AES
The bit fault mentioned in the above part can be injected by clock glitching attack described below.

Most ICs execute calculations by processing data by combinatorial logic blocks separated by D flip-flop register banks sharing the same clock.

Data is usually latched by registers at rising clock edges. Between two such edges, the data travels between registers and gets modified by the

intermediate combinatorial logic blocks. The time needed to propagate data through combinatorial logic is called propagation delay. The

propagation delay and a second delay element, inherent to the use of D flip-flop, called set-up time, define the circuit’s maximal operating

frequency (nominal circuit period). Indeed, to ensure proper circuit operation, the clock period must be strictly greater than the maximal

propagation delay in the concerned circuit (this maximal propagation delay is called critical path) plus the registers’ set-up time. In other words:

𝑇𝑐𝑙𝑜𝑐𝑘 > 𝑡𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 + 𝑡𝑠𝑒𝑡−𝑢𝑝……(5)

Figure 4 Synchronous Representation of Digital ICs

As a matter of fact, any data bit entering a register is the result of a combinatorial calculation involving several previous register output bits. The

transformation of the previous registers’ output into the next register’s input bit takes a determined delay. This delay depends on the logic

performed as well as on the data transiting through the logic. In addition, propagation time varies with circuit temperature and power supply

voltage.

5 | EEE 6744 Hands-On Hardware Security University of Florida

 Ex
p

er
im

en
t

1
0 An adversary can inject clock fault by controlling two parameters: the precise moment at which the fault occurs and the clock anomaly’s

duration. Figure 5 gives an example of how a faulty clock can be generated. Two delayed versions of CLK with programmable skews are

generated from CLK. FAULTY_CLK can be assembled by combining CLK_DELAYED_2’s rising edge and CLK_DELAYED_1’s falling edge. This is

controlled by the signal TRIGGER that positions the perturbation in time. We can see that when the TRIGGER signal is triggered, the FAULTY_CLK

will have a narrowed cycle whose period (faulty period) is shorter than the normal period.

Figure 5 Faulty Clock Signal Generation

Clock an AES with this FUALTY_CLK. When not triggered, the AES will work normally. When triggered, but with a faulty period that is not so

small, it is still possible for the AES to work well. As we control the faulty period to be shorter and shorter, more and more faults will be injected,

and the encryption result will be more and more different from the correct one. It is reported and has been practically proved that when the

faulty period is controlled properly (neither too narrow nor too wide), an only one-bit fault on a byte of a temporary cipher result can be

injected.

6 | EEE 6744 Hands-On Hardware Security University of Florida

 Ex
p

er
im

en
t

1
0

Experiment Set-up: Configuration

The hardware and software needed for this experiment include:

1. The HaHa V3.0 Board.

2. An Oscilloscope or Analog Discovery 2.

3. A computer.

4. GOWIN FPGA Designer to program the FPGA.

5. MATLAB or Python to process data.

For this experiment, use the analog channels when you are measuring the generated clock waveform. Digital channels are not recommended as

you cannot see any slope on those channels, they are either 1 or 0. Therefore, important information may be lost. The original clock frequency of

the clock source on the HaHa V3.0 Board is 50MHz. The smallest time base the Analog Discovery 2 can reach is 10ns/div. The smallest three

bases are recommended when you are configuring in the WaveForms software.

7 | EEE 6744 Hands-On Hardware Security University of Florida

 Ex
p

er
im

en
t

1
0

 Instructions and Questions
PART I Implement the AES
In this part, you are going to implement an AES into the FPGA. Verilog source code can be downloaded from Canvas. You need to create a top

module to instantiate the module aes_128. You will feed ‘clk’ (50MHz) from the board to the AES through an I/O pin (pin 98). Provide ‘state’ and

‘key’ to the aes_128 in the top module by assigning values to wires. The encryption results should be viewed using GOWIN Analyzer

Oscilloscope. You can examine if your AES works fine by trying the keys and states below and see if the outputs are right.

State Key Result

00000000000000000000000000000000 00000000000000000000000000000000 66E94BD4EF8A2C3B884CFA59CA342B2E

00112233445566778899AABBCCDDEEFF 000102030405060708090A0B0C0D0E0F 69C4E0D86A7B0430D8CDB78070B4C55A

3243F6A8885A308D313198A2E0370734 2B7E151628AED2A6ABF7158809CF4F3C 3925841D02DC09FBDC118597196A0B32

1. Each group uses its own state and key in the top module according to the table below. Turn in your code for the top module.

2. View the ciphertext in the GOWIN Analyzer Oscilloscope and take a screenshot of it. Turn in the picture. The encryption result should be

correct according to your group’s state and key. Please note that the synthesis step will take some time.

 State Key

Group 1 D9DA7BEA1A31D8ABE2A27B4E855C5C5C 50ED00C48388EA9B0FB7C204C2C12D39

Group 2 97157A6FC8E4BBE432C40D35F2716092 EBA02E379817D636A144551DF49ADE37

Group 3 F01F2E724AC0AB35BE3A20FF7A7D7FCA D005A3321BBF085C2BC611AE8820839D

Group 4 27ECB2E3A5EE3894885B5289307400E3 98546B83039E89EED41DC9E5F9AC1751

Group 5 2AF70D6BF067D37ED41DCCA704C38B4F 5DBA9B93C355A576600A3E1EDE5C396F

Group 6 F377A75C7D3B1679D10CF404FE12F3F1 DE99EAC143C1CFD0A59CFA5880592F5C

Group 7 7B4BF239CEA318C9768D6A65CFA3F8F6 84116D9DE060505C66D371312CF47AE7

Group 8 F49042F2E8F5F21DEBA6C156075BE33B 1B3CEEDA90CBDF65E7EDA08BB1721E31

Group 9 8AFA2F771DCE63D87A1774897558D887 D1967592FAE7810435D368979BF2A590

Group 10 451BE11315ACCB73DEBF0193646502F3 97864A796B6F2E55CDA680285FE680E7

Group 11 FE458CF6C49A4E25F8C80985FC5F23B5 94F7B931E1FA6604CB9AEA5C2DE4F7BA

Group 12 962F329D772795332149386AE179AA26 68064A6DC2289B33B8DCCB1D9C45EFC1

8 | EEE 6744 Hands-On Hardware Security University of Florida

 Ex
p

er
im

en
t

1
0 PART II Implementing fault injections on AES (Optional for EDGE Students)

In this part, you will inject faults on the AES, so you can perform DFA on it. Use the AES Verilog files along with your group’s state and key from

Part I to introduce faults into the AES. Specifically, we will focus on the 9th round of AES called M9. One bit error in M9 will become a one-byte

error in the cipher result. Injecting a fault for this circuit just means inverting the selected bit on M9.

You are welcome to make this fault injection accessible to the user using the board’s switches. S9 will inject a bit fault if it is toggled on, and S6

to S0 determines the location of the bit fault. Collect the correct ciphertext and all 128 incorrect ciphertexts as a result of one-bit fault injection

on M9. This can be done using the switches or by creating a testbench circuit and simulating for all possible fault injected bits. The latter would

only be advised if you have a working knowledge of testbenches. If you would like to learn about testbenches, there are lots of resources online

on this subject. From there, you can use these ciphertexts along with the state and key from Part I to verify the efficacy of your DFA

implementation in Part III.

Turn in your modified AES Verilog files, testbench (if applicable), and a text file containing correct ciphertext along with 128 incorrect

ciphertexts.

PART III Performing DFA on AES
In this part, you will perform DFA on AES to find the key of the AES. If you are doing PART II, use the information from that to first build a

working DFA implementation. For everyone in the course, download a sof file from the Canvas. There are twelve sof files. Each group should

download and use the one named with your group number. The keys stored in the sof files are different from one file to another. NONE of them

share the same state and key from PART I. You should report the correct key after analyzing differential fault. Just a note, it is possible to

perform DFA without doing PART II.

The FS file that was downloaded for this part is actually very similar to the one you created in PART I, except that there is another function which

is to inject a bit fault into the AES. A RAO file is also provided to read the value of the encryption results.

For the HaHa V3.0, turning on S9 will inject a bit fault. If it is OFF, no fault is injected, and you can observe the correct ciphertext in the In-System

Memory Content Editor. However, when the switch is ON, there is a fault injected into one bit of temporary ciphertext of the 9th round (M9). M9

contains 128 bits and switches 0 to 6 can in total generate 128 (27) combinations. Each state of the seven switches corresponds to one certain

bit. S0 to S6 determines the location of the bit fault. For example, if S9 is ON and S6 to S0 shows 0001111, that means there is a fault injected on

the 15th bit of M9.

9 | EEE 6744 Hands-On Hardware Security University of Florida

 Ex
p

er
im

en
t

1
0 One bit error in M9 will become a one-byte error in the cipher result. You can analyze the difference between the jth byte of the C and the D in

equation (4). To find M9, you can do this. In equation (6), try all the possibilities of x (which has 128 combinations) and ei
 (which has 8

possibilities), and find when the right-hand side equals to the left. There will be several x’s that satisfies the condition. Try all the 8 different Dj’s

for one byte and limit the number of x to be one. That x will be the byte you are looking for in M9. After you get M9, it will be easy for you to get

K10 and K. You will need to use MATLAB, Python, etc. to make the guessing procedure faster. You need to record the C and all the 128 D’s from

the board and analysis the data.

𝐶𝑗 ⊕ 𝐷𝑗 = 𝑆𝑢𝑏𝐵𝑦𝑡𝑒(𝑥) ⊕ 𝑆𝑢𝑏𝐵𝑦𝑡𝑒(𝑥 ⊕ 𝑒𝑖)……(6)

For those doing PART II beforehand, once you retrieve the key using the information from PART II, it should match the key from PART I for your

group. Now that you know it is working for the collected ciphertexts in PART II, you should be able to quickly figure out the key for the fault

injected circuit in PART III. Even though PART II is optional for certain groups, it is highly advisable to construct this circuit to make the job of

retrieving the key using DFA in PART III easier.

1. What is your group’s C?

2. Why do we choose to inject a fault before the last encryption round? What’s the difference between the last round and other rounds?

3. AES will do ShiftRows in every round. Which byte will the result of the encryption of the ith byte go to? (i=0,1, 2, …, 15)

4. For the jth byte of the encryption result, if you have Cj and all the eight Dj’s, it is enough for you to calculate 𝑀𝑖
9. Turn in your script to

calculate 𝑀𝑖
9. (If you can get one byte of M9, you can get all bytes of M9.)

5. What is your group’s M9?

6. What is your group’s K10?

7. What is your group’s K?

10 | EEE 6744 Hands-On Hardware Security University of Florida

 Ex
p

er
im

en
t

1
0

 Optional Follow-up
PART IV Clock glitching attack on AES
The bit fault we injected in PART III can be realized in many ways, such as flash glitching and clock glitching. In this part, we will implement a

clock glitching attack to produce a one-bit fault. All the groups will use the same key and same state shown in the table below.

State 00112233445566778899aabbccddeeff

Key 000102030405060708090a0b0c0d0e0f

Out 69c4e0d86a7b0430d8cdb78070b4c55a

M8 fde3bad205e5d0d73547964ef1fe37f1

K9 549932d1f08557681093ed9cbe2c974e

M9 bd6e7c3df2b5779e0b61216e8b10b689

K10 13111d7fe3944a17f307a78b4d2b30c5

Don’t implement the whole AES. Implement only the 9th round and the last round. The inputs for the 9th round are M8 and K9 which are shown in

the table above. The round key for the last round should be K10 as given in the table above. The text input for the last round is the encryption

output of the 9th round which should equal to M9 in the table above. However, when a fault is injected, M9 will no longer stay the same. It is

supposed to have bits flipped. Store M9 and C (or D) in two RAMs.

Use the method mentioned in the background section to generate a clock glitch.

You will be using the Phase-locked loops (PLL) provided in GOWIN FPGA Designer

and you can instantiate it from the Installed IP by choosing ‘ALTPLL’. When you

configure the PLL, choose the speed grade to be 8 and the frequency input to be

50 MHz. Use two outputs and configure them to have different phase shifts

(multiplication and division factors remain 1).

Generate CLK_DELAYED_1 and CLK_DELAYED_2 (which are just the outputs of

the PLL) and generate FAULT_CLK as shown in Figure 5. The FAULT_CLK will be

similar to the blue one in Figure 6. Figure 6 Sample waveform of the faulty clock.

11 | EEE 6744 Hands-On Hardware Security University of Florida

 Ex
p

er
im

en
t

1
0 Feed the FAULT_CLK into the last two rounds you just implemented, and you may (or may not) find that the M9 has become different. If there is

no fault or there are too many bit faults, adjust the phase shifts of CLK_DELAYED_1 and CLK_DELAYED_2. You should at least get one one-bit

fault on one of the bytes of M9. Ideally, you can get several one-bit faults on several bytes at the same time.

1. Turn in your Verilog code for the last two rounds of AES. Turn in your Verilog code for the FAULTY_CLK generator.

2. Turn in the oscilloscope waveform of the FAULTY_CLK when the one-bit fault happens.

3. Turn in a screenshot of the In-System Memory Content Editor showing the one-bit faulty M9 and D.

12 | EEE 6744 Hands-On Hardware Security University of Florida

 Ex
p

er
im

en
t

1
0

 Lab Report Guidelines

Deliverables:
1. In your report, answer ALL the questions.

2. Prove your AES works well by giving your code and screenshot.

3. In part II, submit all the 128 wrong results of the encryption and 1 correct result from the configuration for your group in PART I. Turn in

the modified AES Verilog.

4. In part III, submit all the 128 wrong results of the encryption and 1 correct result from your group’s SOF file. They will be used as the

input to your DFA code. Include your code; it should be able to (compiled and) run and get the key.

5. For part IV, there will be a procedure to get the final result: you will have to try different parameters. Show your procedure by including

screenshots for different parameters. Explain how you approach the right answer.

Demonstration:
1. Demonstrate working AES implementation on the FPGA.

2. Show some of the wrong keys due to injected faults.

3. Explain your DFA code and show the correct key after running the code.

Your videos should follow the format below:

1. start with a commentary (3-4 sentences) on what this experiment is about and what are the goals.

2. followed by a commentary (3-4 sentences) on the steps you follow to do the experiments.

3. Next, you move the camera to show the experiment setup (the HaHa v3.0 board, connection with Analog Discovery 2 and computer), go

through the steps one by one on the setup - how you apply the inputs, what components of the HaHa v3.0 board are involved, what you

expect to see - and then show the outputs - e.g., recorded signal (if any), output LED or seven segment displays, etc.

4. Next, add a commentary on the key lessons learned through this experiment. If you've done any advanced options, optional follow-up,

or explored anything beyond that is covered by the lab instructions, describe them too.

5. The video should have no mistakes.

13 | EEE 6744 Hands-On Hardware Security University of Florida

 Ex
p

er
im

en
t

1
0

References and Further Reading

[1] Barenghi, Alessandro, et al. "Fault injection attacks on cryptographic devices: Theory, practice, and countermeasures." Proceedings of the

IEEE 100.11 (2012): 3056-3076.

[2] Giraud, Christophe. "DFA on AES." International Conference on Advanced Encryption Standard. Springer Berlin Heidelberg, 2004.

[3] Skorobogatov, Sergei P., and Ross J. Anderson. "Optical fault induction attacks." International Workshop on Cryptographic Hardware and

Embedded Systems. Springer Berlin Heidelberg, 2002.

[4] Barenghi, Alessandro, et al. "Fault attack on AES with single-bit induced faults." Information Assurance and Security (IAS), 2010 Sixth

International Conference on. IEEE, 2010.
[5] Agoyan, Michel, et al. "When clocks fail: On critical paths and clock faults." International Conference on Smart Card Research and Advanced

Applications. Springer Berlin Heidelberg, 2010.

